This paper presents a comprehensive study of hydrogenated amorphous silicon (a-Si)-based detectors, utilizing electrical characterization, Raman spectroscopy, photoemission, and inverse photoemission techniques. The unique properties of a-Si have sparked interest in its application for radiation detection in both physics and medicine. Although amorphous silicon (a-Si) is inherently a highly defective material, hydrogenation significantly reduces defect density, enabling its use in radiation detector devices.
View Article and Find Full Text PDFDetectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features.Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC).
View Article and Find Full Text PDFBackground: The increasing use of complex and high dose-rate treatments in radiation therapy necessitates advanced detectors to provide accurate dosimetry. Rather than relying on pre-treatment quality assurance (QA) measurements alone, many countries are now mandating the use of in vivo dosimetry, whereby a dosimeter is placed on the surface of the patient during treatment. Ideally, in vivo detectors should be flexible to conform to a patient's irregular surfaces.
View Article and Find Full Text PDF. Microbeam radiation therapy (MRT) is an alternative emerging radiotherapy treatment modality which has demonstrated effective radioresistant tumour control while sparing surrounding healthy tissue in preclinical trials. This apparent selectivity is achieved through MRT combining ultra-high dose rates with micron-scale spatial fractionation of the delivered x-ray treatment field.
View Article and Find Full Text PDFWe present a study on the radiation tolerance and timing properties of 3D diamond detectors fabricated by laser engineering on synthetic Chemical Vapor Deposited (CVD) plates. We evaluated the radiation hardness of the sensors using Charge Collection Efficiency (CCE) measurements after neutron fluences up to 1016 n/cm2 (1 MeV equivalent.) The radiation tolerance is significantly higher when moving from standard planar architecture to 3D architecture and increases with the increasing density of the columnar electrodes.
View Article and Find Full Text PDFIn this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material.
View Article and Find Full Text PDFPurpose: Small photon beams used in radiotherapy techniques have inherent characteristics of charge particle disequilibrium and high-dose gradient making accurate dosimetry for such fields very challenging. By means of a 3D manufacturing technique, it is possible to create arrays of pixels with a very small sensitive volume for radiotherapy dosimetry. We investigate the impact of 3D pixels size on absorbed dose sensitivity, linearity of response with dose rate, reproducibility and beam profile measurements.
View Article and Find Full Text PDFWe measured the radiation tolerance of commercially available diamonds grown by the Chemical Vapor Deposition process by measuring the charge created by a 120 GeV hadron beam in a 50 μm pitch strip detector fabricated on each diamond sample before and after irradiation. We irradiated one group of samples with 70 MeV protons, a second group of samples with fast reactor neutrons (defined as energy greater than 0.1 MeV), and a third group of samples with 200 MeV pions, in steps, to (8.
View Article and Find Full Text PDFRadioguided surgery (RGS) is a medical practice which thanks to a radiopharmaceutical tracer and a probe allows the surgeon to identify tumor residuals up to a millimetric resolution in real-time. The employment of β emitters, instead of γ or β, reduces background from healthy tissues, administered activity to the patient, and medical exposure. In a previous work the possibility of using a CMOS Imager (Aptina MT9V011), initially designed for visible light imaging, to detect β from Y or Sr sources has been established.
View Article and Find Full Text PDFInterventional radiology and hemodynamic procedures have rapidly grown in number in the past decade, increasing the importance of personnel dosimetry not only for patients but also for medical staff. The optimization of the absorbed dose during operations is one of the goals that fostered the development of real-time dosimetric systems. Indeed, introducing proper procedure optimization, like correlating dose rate measurements with medical staff position inside the operating room, the absorbed dose could be reduced.
View Article and Find Full Text PDFDijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at √s = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 pb⁻¹. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness.
View Article and Find Full Text PDFA search for pair production of second-generation scalar leptoquarks in the final state with two muons and two jets is performed using proton-proton collision data at √s = 7 TeV collected by the CMS detector at the LHC. The data sample used corresponds to an integrated luminosity of 34 pb⁻¹. The number of observed events is in good agreement with the predictions from the standard model processes.
View Article and Find Full Text PDFA search for pair production of first-generation scalar leptoquarks is performed in the final state containing two electrons and two jets using proton-proton collision data at √s = 7 TeV. The data sample used corresponds to an integrated luminosity of 33 pb⁻¹ collected with the CMS detector at the CERN LHC. The number of observed events is in good agreement with the predictions for the standard model background processes, and an upper limit is set on the leptoquark pair production cross section times β² as a function of the leptoquark mass, where β is the branching fraction of the leptoquark decay to an electron and a quark.
View Article and Find Full Text PDFMeasurements of dijet azimuthal decorrelations in pp collisions at √s=7 TeV using the CMS detector at the CERN LHC are presented. The analysis is based on an inclusive dijet event sample corresponding to an integrated luminosity of 2.9 pb⁻¹.
View Article and Find Full Text PDFMeasurements of the total and differential cross sections dσ/dp(T)(B) and dσ/dy(B) for B(+) mesons produced in pp collisions at sqrt[s]=7 TeV are presented. The data correspond to an integrated luminosity of 5.8 pb(-1) collected by the CMS experiment operating at the LHC.
View Article and Find Full Text PDFThe differential cross section for the inclusive production of isolated prompt photons has been measured as a function of the photon transverse energy E(T)(γ) in pp collisions at √s=7 TeV using data recorded by the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.9 pb(-1).
View Article and Find Full Text PDFThe results of the first search for long-lived gluinos produced in 7 TeV pp collisions at the CERN Large Hadron Collider are presented. The search looks for evidence of long-lived particles that stop in the CMS detector and decay in the quiescent periods between beam crossings. In a dataset with a peak instantaneous luminosity of 1×10(32) cm-2 s-1, an integrated luminosity of 10 pb-1, and a search interval corresponding to 62 hours of LHC operation, no significant excess above background was observed.
View Article and Find Full Text PDFA search for quark compositeness in the form of quark contact interactions, based on hadronic jet pairs (dijets) produced in proton-proton collisions at √s=7 TeV, is described. The data sample of the study corresponds to an integrated luminosity of 2.9 pb(-1) collected with the CMS detector at the LHC.
View Article and Find Full Text PDFA search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9 pb⁻¹ collected by the CMS experiment at the Large Hadron Collider. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs.
View Article and Find Full Text PDFCharged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at square root of s = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/dη|(|η|<0.
View Article and Find Full Text PDF