Publications by authors named "Servin Rathi"

A graphene-MoS (GM) heterostructure based diode is fabricated using asymmetric contacts to MoS, as well as an asymmetric top gate (ATG). The GM diode exhibits a rectification ratio of 5 from asymmetric contacts, which is improved to 10 after the incorporation of an ATG. This improvement is attributed to the asymmetric modulation of carrier concentration and effective Schottky barrier height (SBH) by the ATG during forward and reverse bias.

View Article and Find Full Text PDF
Article Synopsis
  • Two-dimensional (2D) heterostructures, like those using bilayer MoS and few-layered WSe, enhance electrical and optoelectrical properties through unique interactions between the stacked layers.
  • In this setup, MoS acts as a tunneling layer, improving contact resistance for WSe and allowing for better control of electron and hole transport in the device.
  • The research shows that strong interlayer coupling and dual functionality in the heterostructure can lead to advancements in high-performance opto-electrical applications.
View Article and Find Full Text PDF

Molybdenum disulfide (MoS) based field effect transistors (FETs) are of considerable interest in electronic and opto-electronic applications but often have large hysteresis and threshold voltage instabilities. In this study, by using advanced transfer techniques, hexagonal boron nitride (hBN) encapsulated FETs based on a single, homogeneous and atomic-thin MoS flake are fabricated on hBN and SiO substrates. This allows for a better and a precise comparison between the charge traps at the semiconductor-dielectric interfaces at MoS-SiO and hBN interfaces.

View Article and Find Full Text PDF

The fractions of various functional groups in graphene oxide (GO) are directly related to its electrical and chemical properties and can be controlled by various reduction methods like thermal, chemical and optical. However, a method with sufficient controllability to regulate the reduction process has been missing. In this work, a hybrid method of thermal and joule heating processes is demonstrated where a progressive control of the ratio of various functional groups can be achieved in a localized area.

View Article and Find Full Text PDF

We demonstrate a high-performance photodetector with multilayer tin diselenide (SnSe2) exfoliated from a high-quality crystal which was synthesized by the temperature gradient growth method. This SnSe2 photodetector exhibits high photoresponsivity of 5.11 × 105 A W-1 and high specific detectivity of 2.

View Article and Find Full Text PDF

The self-biasing effects of ion gel from source and drain electrodes on electrical characteristics of single layer and few layer molybdenum disulfide (MoS) field-effect transistor (FET) have been studied. The self-biasing effect of ion gel is tested for two different configurations, covered and open, where ion gel is in contact with either one or both, source and drain electrodes, respectively. In open configuration, the linear output characteristics of the pristine device becomes nonlinear and on-off ratio drops by 3 orders of magnitude due to the increase in "off" current for both single and few layer MoS FETs.

View Article and Find Full Text PDF

In this work, we report on the hydrogen (H) sensing behavior of reduced graphene oxide (RGO)/molybdenum disulfide (MoS) nano particles (NPs) based composite film. The RGO/MoS composite exhibited a highly enhanced H response (∼15.6%) for 200 ppm at an operating temperature of 60 °C.

View Article and Find Full Text PDF

HfSe field effect transistors are systematically studied in order to selectively tune their electrical properties by optimizing layer thickness and oxygen plasma treatment. The optimized plasma-treated HfSe field effect transistors showed a high on/off ratio improvement of four orders of magnitude, from 27 to 10, a field effect mobility increase from 2.16 to 3.

View Article and Find Full Text PDF

An ambipolar dual-channel field-effect transistor (FET) with a WSe /MoS heterostructure formed by separately controlled individual channel layers is demonstrated. The FET shows a switchable ambipolar behavior with independent carrier transport of electrons and holes in the individual layers of MoS and WSe , respectively. Moreover, the photoresponse is studied at the heterointerface of the WSe /MoS dual-channel FET.

View Article and Find Full Text PDF

We fabricated a non-local spin valve with a thin layer of graphite with Co transparent electrodes. The spin-valve effect and spin precession were observed at room temperature. The magnitude of the mangetoresistance increases when temperature decreases.

View Article and Find Full Text PDF

We investigated the n-type doping effect of hydrazine on the electrical characteristics of a molybdenum disulphide (MoS2)-based field-effect transistor (FET). The threshold voltage of the MoS2 FET shifted towards more negative values (from -20 to -70 V) on treating with 100% hydrazine solution with the channel current increasing from 0.5 to 25 μA at zero gate bias.

View Article and Find Full Text PDF

We report a facile and highly effective n-doping method using hydrazine solution to realize enhanced electron conduction in a WSe2 field-effect transistor (FET) with three different metal contacts of varying work functions-namely, Ti, Co, and Pt. Before hydrazine treatment, the Ti- and Co-contacted WSe2 FETs show weak ambipolar behaviour with electron dominant transport, whereas in the Pt-contacted WSe2 FETs, the p-type unipolar behaviour was observed with the transport dominated by holes. In the hydrazine treatment, a p-type WSe2 FET (Pt contacted) was converted to n-type with enhanced electron conduction, whereas highly n-doped properties were achieved for both Ti- and Co-contacted WSe2 FETs with on-current increasing by three orders of magnitude for Ti.

View Article and Find Full Text PDF

Lateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field.

View Article and Find Full Text PDF

Alternating current dielectrophoresis (DEP) is an excellent technique to assemble nanoscale materials. For efficient DEP, the optimization of the key parameters like peak-to-peak voltage, applied frequency, and processing time is required for good device. In this work, we have assembled graphene oxide (GO) nanostructures mixed with platinum (Pt) nanoparticles between the micro gap electrodes for a proficient hydrogen gas sensors.

View Article and Find Full Text PDF

In order to investigate the metal-insulator transition characteristics of VO2 devices annealed in reducing atmosphere after device fabrication at various temperature, electrical, chemical, and thermal characteristics are measured and analyzed. It is found that the sheet resistance and the insulator-metal transition point, induced by both voltage and thermal, decrease when the devices are annealed from 200 to 500 °C. The V 2p3/2 peak variation in X-ray photoelectron spectroscopy (XPS) characterization verifies the reduction of thin-films.

View Article and Find Full Text PDF

The material properties of semiconductor nanowires are greatly affected by electrical, optical, and chemical processes occurring at their surfaces because of the very large surface-to-volume ratio. Precise control over doping as well as the surface charge properties has been demonstrated in thin films and nanowires for fundamental physics and application-oriented research. However, surface doping behavior is expected to differ markedly from bulk doping in conventional semiconductor materials.

View Article and Find Full Text PDF

Next generation graphene-based electronics essentially need a dielectric layer with several requirements such as high flexibility, high transparency, and low process temperature. Here, we propose and investigate a flexible and transparent poly-4-vinylphenol and poly(melamine-co-formaldehyde) (PVP/PMF) insulating layer to achieve intrinsic graphene and an excellent gate dielectric layer at sub 200 °C. Chemical and electrical effects of PVP/PMF layer on graphene as well as its dielectric property are systematically investigated through various measurements by adjusting the ratio of PVP to PMF and annealing temperature.

View Article and Find Full Text PDF