Publications by authors named "Servant P"

AI assistants, such as ChatGPT, are being increasingly used by students in higher education institutions. While these tools provide opportunities for improved teaching and education, they also pose significant challenges for assessment and learning outcomes. We conceptualize these challenges through the lens of vulnerability, the potential for university assessments and learning outcomes to be impacted by student use of generative AI.

View Article and Find Full Text PDF

Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D.

View Article and Find Full Text PDF

The extremely radiation and desiccation resistant bacterium possesses three genes encoding Endonuclease III-like enzymes (DrEndoIII1, DrEndoIII2, DrEndoIII3). enzymatic activity measurements revealed that DrEndoIII2 is the main Endonuclease III in this organism, while DrEndoIII1 and 3 possess unusual and, so far, no detectable EndoIII activity, respectively. In order to understand the role of these enzymes at a cellular level, DrEndoIII knockout mutants were constructed and subjected to various oxidative stress related conditions.

View Article and Find Full Text PDF
Article Synopsis
  • - Deinococcus radiodurans is a unique bacterium known for its strong resistance to DNA damage, which triggers significant changes in its gene expression, particularly activating specific DNA Damage Response genes.
  • - The DdrC protein, one of these critical genes, is quickly activated after exposure to radiation and plays a key role in protecting and reorganizing the bacterium's DNA.
  • - Recent studies have detailed the structure of DdrC and its ability to bind and compact DNA, indicating its potential role in helping the bacterium recover from severe DNA damage by maintaining genome integrity during repair.
View Article and Find Full Text PDF

Numerous genes are overexpressed in the radioresistant bacterium after exposure to radiation or prolonged desiccation. It was shown that the DdrO and IrrE proteins play a major role in regulating the expression of approximately twenty genes. The transcriptional repressor DdrO blocks the expression of these genes under normal growth conditions.

View Article and Find Full Text PDF

Here, we report the in vitro and in vivo characterization of the DdrD protein from the extraordinary stress-resistant bacterium, D. radiodurans. DdrD is one of the most highly induced proteins following cellular irradiation or desiccation.

View Article and Find Full Text PDF

Horizontal gene transfer is a major driver of bacterial evolution and adaptation to environmental stresses, occurring notably via transformation of naturally competent organisms. The bacterium, characterized by its extreme radioresistance, is also naturally competent. Here, we investigated the role of players involved in different steps of natural transformation.

View Article and Find Full Text PDF

Exposure to harmful conditions such as radiation and desiccation induce oxidative stress and DNA damage. In radiation-resistant Deinococcus bacteria, the radiation/desiccation response is controlled by two proteins: the XRE family transcriptional repressor DdrO and the COG2856 metalloprotease IrrE. The latter cleaves and inactivates DdrO.

View Article and Find Full Text PDF

Our knowledge of bacterial nucleoids originates mostly from studies of rod- or crescent-shaped bacteria. Here we reveal that Deinococcus radiodurans, a relatively large spherical bacterium with a multipartite genome, constitutes a valuable system for the study of the nucleoid in cocci. Using advanced microscopy, we show that D.

View Article and Find Full Text PDF

The Deinococcus radiodurans bacterium is one of the most radioresistant organisms known. It can repair hundreds of radiation-induced DNA double-strand breaks without loss of viability and reconstitute an intact genome through RecA-dependent and RecA-independent DNA repair pathways. Among the Deinococcus specific proteins required for radioresistance, the PprA protein was shown to play a major role for accurate chromosome segregation and cell division after completion of DNA repair.

View Article and Find Full Text PDF

Spurious blinking fluorescent spots are often seen in bacteria during single-molecule localization microscopy experiments. Although this 'autoblinking' phenomenon is widespread, its origin remains unclear. In Deinococcus strains, we observed particularly strong autoblinking at the periphery of the bacteria, facilitating its comprehensive characterization.

View Article and Find Full Text PDF

The NA amage esponse gene encodes a transcription regulator belonging to the cAMP receptor protein (CRP) family. Cells devoid of the DdrI protein exhibit a pleiotropic phenotype, including growth defects and sensitivity to DNA-damaging agents and to oxidative stress. Here, we show that the absence of the DdrI protein also confers sensitivity to heat shock treatment, and several genes involved in heat shock response were shown to be upregulated in a DdrI-dependent manner.

View Article and Find Full Text PDF

The bacterium Deinococcus radiodurans possesses a set of Deinococcus-specific genes highly induced after DNA damage. Among them, ddrC (dr0003) was recently re-annotated, found to be in the inverse orientation and called A2G07_00380. Here, we report the first in vivo and in vitro characterization of the corrected DdrC protein to better understand its function in irradiated cells.

View Article and Find Full Text PDF

PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA.

View Article and Find Full Text PDF

The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks.

View Article and Find Full Text PDF

Processes favoring the exceptional resistance to genotoxic stress of Deinococcus radiodurans are not yet completely characterized. It was postulated that its nucleoid and chromosome(s) organization could participate in the DNA double strand break repair process. Here, we investigated the organization of chromosome 1 by localization of three chromosomal loci including oriC, Ter and a locus located in its left arm.

View Article and Find Full Text PDF

Deinococcus radiodurans is known for its extreme radioresistance. Comparative genomics identified a radiation-desiccation response (RDR) regulon comprising genes that are highly induced after DNA damage and containing a conserved motif (RDRM) upstream of their coding region. We demonstrated that the RDRM sequence is involved in cis-regulation of the RDR gene ddrB in vivo.

View Article and Find Full Text PDF

The nucleoids of radiation-resistant Deinococcus species show a high degree of compaction maintained after ionizing irradiation. We identified proteins recruited after irradiation in nucleoids of Deinococcus radiodurans and Deinococcus deserti by means of comparative proteomics. Proteins in nucleoid-enriched fractions from unirradiated and irradiated Deinococcus were identified and semiquantified by shotgun proteomics.

View Article and Find Full Text PDF

The bacterium Deinococcus radiodurans exhibits an extreme resistance to ionizing radiation. A small subset of Deinococcus genus-specific genes were shown to be up-regulated upon exposure to ionizing radiation and to play a role in genome reconstitution. These genes include an SSB-like protein called DdrB.

View Article and Find Full Text PDF

Deinococcus radiodurans, one of the most radioresistant organisms known to date is able to reconstruct an intact genome from hundreds of DNA fragments. Here, we investigate the in vivo role of PprA, a radiation-induced Deinococcus specific protein. We report that DNA double strand break repair in cells devoid of PprA and exposed to 3800Gy γ-irradiation takes place efficiently with a delay of only 1h as compared to the wild type, whereas massive DNA synthesis begins 90min after irradiation as in the wild type, a phenotype insufficient to explain the severe radiosensitivity of the ΔpprA mutant.

View Article and Find Full Text PDF

Compared to radiation-sensitive bacteria, the nucleoids of radiation-resistant Deinococcus species show a higher degree of compaction. Such a condensed nucleoid may contribute to the extreme radiation resistance of Deinococcus by limiting dispersion of radiation-induced DNA fragments. Architectural proteins may play a role in this high degree of nucleoid compaction, but comparative genomics revealed only a limited number of Deinococcus homologs of known nucleoid-associated proteins (NAPs) from other species such as Escherichia coli.

View Article and Find Full Text PDF

The Deinococcus radiodurans bacterium exhibits an extreme resistance to ionizing radiation. Here, we investigated the in vivo role of DdrB, a radiation-induced Deinococcus specific protein that was previously shown to exhibit some in vitro properties akin to those of SSB protein from Escherichia coli but also to promote annealing of single stranded DNA. First we report that the deletion of the C-terminal motif of the DdrB protein, which is similar to the SSB C-terminal motif involved in recruitment to DNA of repair proteins, did neither affect cell radioresistance nor DNA binding properties of purified DdrB protein.

View Article and Find Full Text PDF

In Deinococcus radiodurans, the extreme resistance to DNA-shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins.

View Article and Find Full Text PDF

Deinococcus radiodurans contains a highly condensed nucleoid that remains to be unaltered following the exposure to high doses of gamma-irradiation. Proteins belonging to the structural maintenance of chromosome protein (SMC) family are present in all organisms and were shown to be involved in chromosome condensation, pairing, and/or segregation. Here, we have inactivated the smc gene in the radioresistant bacterium D.

View Article and Find Full Text PDF

The nucleoid of radioresistant bacteria, including D. radiodurans, adopts a highly condensed structure that remains unaltered after exposure to high doses of irradiation. This structure may contribute to radioresistance by preventing the dispersion of DNA fragments generated by irradiation.

View Article and Find Full Text PDF