The purpose of this work was to evaluate the level of antimicrobial resistant Escherichia coli isolates in freshwaters and hospital effluents in Belgium. The samples were collected from 24 locations along the Ourthe, Vesdre, Amblève and Meuse rivers and in the wastewater effluents of several hospitals. The sampling stations in rivers were classified according to the dominant land covers of the rivers (rural, urban and forest areas).
View Article and Find Full Text PDFMinimum treatment requirements are set in response to established or anticipated levels of enteric pathogens in the source water of drinking water treatment plants (DWTPs). For surface water, contamination can be determined directly by monitoring reference pathogens or indirectly by measuring fecal indicators such as Escherichia coli (E. coli).
View Article and Find Full Text PDFAs the prevalence of cancers increases with age, some elderly patients are confronted with multiple tumoural pathologies. The clinical case of a 70-year-old patient with adenocarcinoma of the breast and multiple myeloma complicated by severe renal failure illustrates the complexity of oncogeriatric management. The geriatric assessment makes it possible to detect frailty and provides assistance in the development of a personalized care plan while respecting the quality of life.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
December 2020
A non-motile, straight-rod-shaped, Gram-stain-positive and facultative anaerobic bacterium (ie., strain G1) was isolated from production waters from an Algerian oilfield. Growth was observed in the presence of 0.
View Article and Find Full Text PDFWaterborne disease outbreaks associated with recreational waters continue to be reported around the world despite existing microbiological water quality monitoring frameworks. Most regulations resort to the use of culture-based enumeration of faecal indicator bacteria such as Escherichia coli to protect bathers from gastrointestinal illness risks. However, the long sample-to-result time of standard culture-based assays (minimum 18-24 h) and infrequent regulatory sampling (weekly or less) do not enable detection of episodic water quality impairments and associated public health risks.
View Article and Find Full Text PDFPast waterborne outbreaks have demonstrated that informed vulnerability assessment of drinking water supplies is paramount for the provision of safe drinking water. Although current monitoring frameworks are not designed to account for short-term peak concentrations of fecal microorganisms in source waters, the recent development of online microbial monitoring technologies is expected to fill this knowledge gap. In this study, online near real-time monitoring of β-d-glucuronidase (GLUC) activity was conducted for 1.
View Article and Find Full Text PDFThe dynamic of a community of 20 bacterial strains isolated from river water was followed in R2 broth and in autoclaved river water medium for 27 days in batch experiments. At an early stage of incubation, a fast-growing specialist strain, Acinetobater sp., dominated the community in both media.
View Article and Find Full Text PDFMicrobiological water quality is traditionally assessed using culture-based enumeration of faecal indicator bacteria such as Escherichia coli. Despite their relative ease of use, these methods require a minimal 18-24 h-incubation step before the results are obtained. This study aimed to assess the suitability of an autonomous online fluorescence-based technology measuring β-glucuronidase (GLUC) activity for rapid near-real time monitoring of E.
View Article and Find Full Text PDFThis study aims to investigate the prevalence of clinically relevant carbapenemases genes (bla, bla and bla) in water samples collected over one-year period from hospital (H), raw and treated wastewater of two wastewater treatment plants (WWTPs) as well as along the Zenne River (Belgium). The genes were quantified in both particle-attached (PAB) and free-living (FLB) bacteria. Our results showed that absolute abundances were the highest in H waters.
View Article and Find Full Text PDFThe Zenne River, crossing the Brussels region (Belgium) is an extremely urbanized river impacted by both domestic and industrial effluents. The objective of this study was to monitor the occurrence and activity of Endocrine Active Substances (EAS) in river water and sediments in the framework of the Environmental Quality Standards Directive (2008/105/EC and 2013/39/EU). Activities were determined using Estrogen and Dioxin Responsive Elements (ERE and DRE) Chemical Activated Luciferase Gene Expression (CALUX) bioassays.
View Article and Find Full Text PDFUrban rivers are impacted ecosystems which may play an important role as reservoirs for antibiotic-resistant (AR) bacteria. The main objective of this study was to describe the prevalence of antibiotic resistance along a sewage-polluted urban river. Seven sites along the Zenne River (Belgium) were selected to study the prevalence of AR Escherichia coli and freshwater bacteria over a 1-year period.
View Article and Find Full Text PDFA cellular approach combining Direct Viable Counting and Fluorescent In Situ Hybridization using a one-step multiple-probe technique and Solid Phase Cytometry (DVC-FISH-SPC) was developed to monitor total viable vibrios and cover the detection of a large diversity of vibrios. FISH combined three probes in the same assay and targeted sequences located at different positions on the 16S rRNA of Vibrio and Aliivibrio members. We performed a 10-month in situ study to investigate the weekly dynamics of viable vibrios relative to culturable counts at two northwestern Mediterranean coastal sites, and identified the key physicochemical factors for their occurrence in water using a multivariate analysis.
View Article and Find Full Text PDFMicrobial communities play a key role in water self-purification. They are primary drivers of biogenic element cycles and ecosystem processes. However, these communities remain largely uncharacterized.
View Article and Find Full Text PDFThe aim of this study was to investigate the diversity of the population, focusing on the occurrence of pathogenic , in surface water draining a rural catchment. Two sampling campaigns were carried out in similar hydrological conditions (wet period, low flow) along a river continuum, characterized by two opposite density gradients of animals (cattle and wild animals) and human populations. While the abundance of slightly increased along the river continuum, the abundance of both human and ruminant-associated markers, as well as the number of multi-resistant to antibiotics, evidenced a fecal contamination originating from animals at upstream rural sites, and from humans at downstream urban sites.
View Article and Find Full Text PDFThe faecal indicator Escherichia coli plays a central role in water quality assessment and monitoring. It is therefore essential to understand its fate under various environmental constraints such as predation by bacterivorous zooplankton. Whereas most studies have examined how protozooplankton communities (heterotrophic nanoflagellates and ciliates) affect the fate of E.
View Article and Find Full Text PDFMany studies have been published on the use of models to assess water quality through faecal contamination levels. However, the vast majority of this work has been conducted in developed countries and similar studies from developing countries in tropical regions are lacking. Here, we used the Seneque/Riverstrahler model to investigate the dynamics and seasonal distribution of total coliforms (TC), an indicator of faecal contamination, in the Red River (Northern Vietnam) and its upstream tributaries.
View Article and Find Full Text PDFQuality assessment of environments under high anthropogenic pressures such as the Seine Basin, subjected to complex and chronic inputs, can only be based on combined chemical and biological analyses. The present study integrates and summarizes a multidisciplinary dataset acquired throughout a 1-year monitoring survey conducted at three workshop sites along the Seine River (PIREN-Seine program), upstream and downstream of the Paris conurbation, during four seasonal campaigns using a weight-of-evidence approach. Sediment and water column chemical analyses, bioaccumulation levels and biomarker responses in caged gammarids, and laboratory (eco)toxicity bioassays were integrated into four lines of evidence (LOEs).
View Article and Find Full Text PDFThe quality of a drinking water source depends largely on upstream contaminant discharges. Sewer overflows can have a large influence on downstream drinking water intakes as they discharge untreated or partially treated wastewaters that may be contaminated with pathogens. This study focuses on the quantification of Escherichia coli discharges from combined sewer overflows (CSOs) and the dispersion and diffusion in receiving waters in order to prioritize actions for source water protection.
View Article and Find Full Text PDFThis study was set out to investigate the impacts of Combined Sewer Overflows (CSOs) on the microbiological water quality of a river used as a source of drinking water treatment plants. Escherichia coli concentrations were monitored at various stations of a river segment located in the Greater Montreal Area including two Drinking Water Intakes (DWIs) in different weather conditions (dry weather and wet weather (precipitation and snowmelt period)). Long-term monitoring data (2002-2011) at DWIs revealed good microbiological water quality with E.
View Article and Find Full Text PDFIron-rich (ferruginous) ocean chemistry prevailed throughout most of Earth's early history. Before the evolution and proliferation of oxygenic photosynthesis, biological production in the ferruginous oceans was likely driven by photoferrotrophic bacteria that oxidize ferrous iron {Fe(II)} to harness energy from sunlight, and fix inorganic carbon into biomass. Photoferrotrophs may thus have fuelled Earth's early biosphere providing energy to drive microbial growth and evolution over billions of years.
View Article and Find Full Text PDFThis paper studies the effects of the implementation of wastewater treatment (WWT) on the water quality of small urban river systems by considering as an extreme case study (volumetric contribution of wastewaters >50%) the evolution of the Zenne River waters (Belgium) over the last 40 years. In urban rivers, organic matter (OM), oxygen, and nutrients are primarily controlled by wastewater releases which depend on the population and the WWT capacity in the river basin, the latter being dependent on environmental policy decisions. We introduce a novel basin-scale evaluation method that considers the evolution of annual pollutant loads at the outlet of the river basin directly as a function of WWT capacity.
View Article and Find Full Text PDFThe microbial community composition in meromictic Lake Kivu, with one of the largest CH4 reservoirs, was studied using 16S rDNA and ribosomal RNA (rRNA) pyrosequencing during the dry and rainy seasons. Highly abundant taxa were shared in a high percentage between bulk (DNA-based) and active (RNA-based) bacterial communities, whereas a high proportion of rare species was detected only in either an active or bulk community, indicating the existence of a potentially active rare biosphere and the possible underestimation of diversity detected when using only one nucleic acid pool. Most taxa identified as generalists were abundant, and those identified as specialists were more likely to be rare in the bulk community.
View Article and Find Full Text PDFA combined sewer overflow (CSO) outfall was monitored to assess the impact of temporal mass loads on the appropriateness of treatment options. Instantaneous loads (mass per s) varied by approximately three orders of magnitude during events (n = 9 in spring, summer and the fall) with no significant seasonal variations. The median fraction of total loads discharged with the first 25% of the total volume ranged from 28% (theophylline) to 40% (Total Suspended Solids (TSS)) and loads remained high for the duration of the events.
View Article and Find Full Text PDFIn order to investigate the factors controlling the bacterial community composition (BCC) in reservoirs, we sampled three freshwater reservoirs with contrasted physical and chemical characteristics and trophic status. The BCC was analysed by 16S rRNA gene amplicon 454 pyrosequencing. In parallel, a complete dataset of environmental parameters and phytoplankton community composition was also collected.
View Article and Find Full Text PDFThis study presents an analysis of climate change impacts on a large river located in Québec (Canada) used as a drinking water source. Combined sewer overflow (CSO) effluents are the primary source of fecal contamination of the river. An analysis of river flowrates was conducted using historical data and predicted flows from a future climate scenario.
View Article and Find Full Text PDF