Publications by authors named "Serrurier A"

Audio-based classification techniques for body sounds have long been studied to aid in the diagnosis of respiratory diseases. While most research is centered on the use of coughs as the main acoustic biomarker, other body sounds also have the potential to detect respiratory diseases. Recent studies on the coronavirus disease 2019 (COVID-19) have suggested that breath and speech sounds, in addition to cough, correlate with the disease.

View Article and Find Full Text PDF

In speech production, the anatomical morphology forms the substrate on which the speakers build their articulatory strategy to reach specific articulatory-acoustic goals. The aim of this study is to characterize morphological inter-speaker variability by building a shape model of the full vocal tract including hard and soft structures. Static magnetic resonance imaging data from 41 speakers articulating altogether 1947 phonemes were considered, and the midsagittal articulator contours were manually outlined.

View Article and Find Full Text PDF

Cough is a very common symptom and the most frequent reason for seeking medical advice. Optimized care goes inevitably through an adapted recording of this symptom and automatic processing. This study provides an updated exhaustive quantitative review of the field of cough sound acquisition, automatic detection in longer audio sequences and automatic classification of the nature or disease.

View Article and Find Full Text PDF

The various speech sounds of a language are obtained by varying the shape and position of the articulators surrounding the vocal tract. Analyzing their variations is crucial for understanding speech production, diagnosing speech disorders and planning therapy. Identifying key anatomical landmarks of these structures on medical images is a pre-requisite for any quantitative analysis and the rising amount of data generated in the field calls for an automatic solution.

View Article and Find Full Text PDF

Speech communication relies on articulatory and acoustic codes shared between speakers and listeners despite inter-individual differences in morphology and idiosyncratic articulatory strategies. This study addresses the long-standing problem of characterizing and modelling speaker-independent articulatory strategies and inter-speaker articulatory variability. It explores a multi-speaker modelling approach based on two levels: statistically-based linear articulatory models, which capture the speaker-specific articulatory variability on the one hand, are in turn controlled by a speaker model, which captures the inter-speaker variability on the other hand.

View Article and Find Full Text PDF

This paper analyzes the influence of pregnancy stage and fetus position on the whole-body and brain exposure of the fetus to radiofrequency electromagnetic fields. Our analysis is performed using semi-homogeneous pregnant woman models between 8 and 32 weeks of amenorrhea. By analyzing the influence of the pregnancy stage on the environmental whole-body and local exposure of a fetus in vertical position, head down or head up, in the 2100 MHz frequency band, we concluded that both whole-body and average brain exposures of the fetus decrease during the first pregnancy trimester, while they advance during the pregnancy due to the rapid weight gain of the fetus in these first stages.

View Article and Find Full Text PDF

Fetal dosimetry studies require the development of accurate numerical 3D models of the pregnant woman and the fetus. This paper proposes a 3D articulated fetal growth model covering the main phases of pregnancy and a pregnant woman model combining the utero-fetal structures and a deformable non-pregnant woman body envelope. The structures of interest were automatically or semi-automatically (depending on the stage of pregnancy) segmented from a database of images and surface meshes were generated.

View Article and Find Full Text PDF

Three-dimensional (3D) reconstruction of lower limbs is essential for surgical planning and clinical outcome evaluation. 3D reconstruction from biplanar calibrated radiographs may be an alternative to irradiation issues of CT-scan. A previous study proposed a two-step reconstruction method based on parametric models and statistical inferences leading to a fast Initial Solution (IS) followed by manual adjustments.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the enhancement of 3D bone reconstruction using cortical thickness (COT) to improve research and medical applications, specifically in asymptomatic femurs.
  • A new method is developed to reconstruct internal and external cortical surfaces from CT scans, showing high accuracy with errors less than 1.3 mm.
  • Analysis reveals that COT distributions can be characterized by two principal components: one reflects the average thickness, while the other indicates shape variations of the femur's cortical structure.
View Article and Find Full Text PDF

Three-dimensional (3D) reconstruction of the skeleton from biplanar X-rays relies on scarce information digitalised by an operator on both frontal and lateral radiographs. In clinical routine, difficulties occur for non-skilled operators to discriminate the medial from the lateral femur condyle on the lateral view. Our study proposes an algorithm able to detect automatically a possible inversion of the two condyles by the operator at an early stage of the reconstruction process.

View Article and Find Full Text PDF

Scientists seek to use fossil and archaeological evidence to constrain models of the coevolution of human language and tool use. We focus on Neanderthals, for whom indirect evidence from tool use and ancient DNA appears consistent with an adaptation to complex vocal-auditory communication. We summarize existing arguments that the articulatory apparatus for speech had not yet come under intense positive selection pressure in Neanderthals, and we outline some recent evidence and analyses that challenge such arguments.

View Article and Find Full Text PDF

An original three-dimensional (3D) linear articulatory model of the velum and nasopharyngeal wall has been developed from magnetic resonance imaging (MRI) and computed tomography images of a French subject sustaining a set of 46 articulations, covering his articulatory repertoire. The velum and nasopharyngeal wall are represented by generic surface triangular meshes fitted to the 3D contours extracted from MRI for each articulation. Two degrees of freedom were uncovered by principal component analysis: first, VL accounts for 83% of the velum variance, corresponding to an oblique vertical movement seemingly related to the levator veli palatini muscle; second, VS explains another 6% of the velum variance, controlling a mostly horizontal movement possibly related to the sphincter action of the superior pharyngeal constrictor.

View Article and Find Full Text PDF

In the framework of experimental phonetics, our approach to the study of speech production is based on the measurement, the analysis and the modeling of orofacial articulators such as the jaw, the face and the lips, the tongue or the velum. Therefore, we present in this article experimental techniques that allow characterising the shape and movement of speech articulators (static and dynamic MRI, computed tomodensitometry, electromagnetic articulography, video recording). We then describe the linear models of the various organs that we can elaborate from speaker-specific articulatory data.

View Article and Find Full Text PDF