Background: The efficacy of immune checkpoint inhibitors (ICIs) depends on the tumor immune microenvironment (TIME), with a preference for a T cell-inflamed TIME. However, challenges in tissue-based assessments via biopsies have triggered the exploration of non-invasive alternatives, such as radiomics, to comprehensively evaluate TIME across diverse cancers. To address these challenges, we develop an ICI response signature by integrating radiomics with T cell-inflamed gene-expression profiles.
View Article and Find Full Text PDFBackground: The impact of thrombolytics directed towards different thrombus components regarding site of occlusion in combination with mechanical thrombectomy (MT) to achieve endovascular complete recanalization is unclear.
Methods: Retrospective analysis of a prospective database in two stroke centers. Intracranial thrombi retrieved by MT were analyzed using hematoxylin-eosin staining for fibrin and red blood cell proportions, and CD61 immunostaining for platelets proportion in thrombus (PLTPT) assessment.
To predict outcome to combination bevacizumab (BVZ) therapy, we employed cell-free DNA (cfDNA) to determine chromosomal instability (CIN), nucleosome footprints (NF) and methylation profiles in metastatic colorectal cancer (mCRC) patients. Low-coverage whole-genome sequencing (LC-WGS) was performed on matched tumor and plasma samples, collected from 74 mCRC patients from the AC-ANGIOPREDICT Phase II trial (NCT01822444), and analysed for CIN and NFs. A validation cohort of plasma samples from the University Medical Center Mannheim (UMM) was similarly profiled.
View Article and Find Full Text PDFMPM is an aggressive disease with an immunosuppressive tumor microenvironment, and interest in exploring immunotherapy in this disease has been increasing. In the first line of treatment, the combination of nivolumab and ipilimumab demonstrated an improvement in survival over chemotherapy. The presence of TILs has been recognized as a marker of antitumor immune response to chemotherapy in solid tumors.
View Article and Find Full Text PDFPatient-derived organoids (PDOs) recapitulate tumor architecture, contain cancer stem cells and have predictive value supporting personalized medicine. Here we describe a large-scale functional screen of dual-targeting bispecific antibodies (bAbs) on a heterogeneous colorectal cancer PDO biobank and paired healthy colonic mucosa samples. More than 500 therapeutic bAbs generated against Wingless-related integration site (WNT) and receptor tyrosine kinase (RTK) targets were functionally evaluated by high-content imaging to capture the complexity of PDO responses.
View Article and Find Full Text PDFFormalin-fixed, paraffin-embedded (FFPE) tissues represent the most widely available clinical material to study colorectal cancer (CRC). However, the accuracy and clinical validity of FFPE microbiome profiling in CRC is uncertain. Here, we compared the microbial composition of 10 paired fresh-frozen (FF) and FFPE CRC tissues using 16S rRNA sequencing and RNA-ISH.
View Article and Find Full Text PDFDespite some impressive clinical results with immune checkpoint inhibitors, the majority of patients with cancer do not respond to these agents, in part due to immunosuppressive mechanisms in the tumor microenvironment. High levels of adenosine in tumors can suppress immune cell function, and strategies to target the pathway involved in its production have emerged. CD73 is a key enzyme involved in adenosine production.
View Article and Find Full Text PDFDespite their recognised role in HER2-positive (HER2+) breast cancer (BC), the composition, localisation and functional orientation of immune cells within tumour microenvironment, as well as its dynamics during anti-HER2 treatment, is largely unknown. We here investigate changes in tumour-immune contexture, as assessed by stromal tumour-infiltrating lymphocytes (sTILs) and by multiplexed spatial cellular phenotyping, during treatment with lapatinib-trastuzumab in HER2+ BC patients (PAMELA trial). Moreover, we evaluate the relationship of tumour-immune contexture with hormone receptor status, intrinsic subtype and immune-related gene expression.
View Article and Find Full Text PDFBrain metastases are the most common tumor of the brain with a dismal prognosis. A fraction of patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype.
View Article and Find Full Text PDFObjective: Ki67 is a prognostic and predictive marker in breast cancer (BC). However, manual scoring (MS) by visual assessment suffers from high inter-observer variability which limits its clinical use. Here, we developed a new digital image analysis (DIA) workflow, named KiQuant for automated scoring of Ki67 and investigated its equivalence with standard pathologist's assessment.
View Article and Find Full Text PDFBackground: Accumulating evidence has identified Fusobacterium as an important pathogenic gut bacterium associated with colorectal cancer. Nevertheless, only limited data exist about the role of this bacterium in locally advanced rectal cancer (LARC). In this study, we quantified Fusobacterium nucleatum in untreated and post-neoadjuvant chemoradiotherapy (nCRT) samples from LARC patients and investigated its association with therapy response and survival.
View Article and Find Full Text PDFKIT or PDGFRA gain-of-function mutations are the primary drivers of gastrointestinal stromal tumor (GIST) growth and progression throughout the disease course. The PI3K/mTOR pathway is critically involved in the transduction of KIT/PDGFRA oncogenic signaling regardless of the type of primary and secondary mutations, and therefore emerges as a relevant targetable node in GIST biology. We evaluated in GIST preclinical models the antitumor activity of copanlisib, a novel pan-class-I PI3K inhibitor with predominant activity against p110α and p110δ isoforms, as single-agent and in combination with first-line KIT inhibitor imatinib.
View Article and Find Full Text PDFProtein biomarkers are widely used in cancer diagnosis, prognosis, and prediction of treatment response. Here we introduce the use of targeted multiplex proteomics (TMP) as a tool to simultaneously measure a panel of 54 proteins involved in oncogenic, tumour suppression, drug metabolism and resistance, in patients with metastatic colorectal cancer (mCRC). TMP provided valuable diagnostic information by unmasking an occult neuroendocrine differentiation and identifying a misclassified case based on abnormal proteins phenotype.
View Article and Find Full Text PDFColorectal cancers comprise a complex mixture of malignant cells, nontransformed cells, and microorganisms. is among the most prevalent bacterial species in colorectal cancer tissues. Here we show that colonization of human colorectal cancers with and its associated microbiome-including , , and species-is maintained in distal metastases, demonstrating microbiome stability between paired primary and metastatic tumors.
View Article and Find Full Text PDFLiving Rev Relativ
February 2016
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy.
View Article and Find Full Text PDFOn September 14, 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914.
View Article and Find Full Text PDFOn September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval.
View Article and Find Full Text PDFThe LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
View Article and Find Full Text PDFOn September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015. GW150914 was observed with a matched filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.
View Article and Find Full Text PDF