Environ Sci Pollut Res Int
March 2024
The Vegetation Health Index (VHI) is a metric used to assess the health and condition of vegetation, based on satellite-derived data. It offers a comprehensive indicator of stress or vigor, commonly used in agriculture, ecology, and environmental monitoring for forecasting changes in vegetation health. Despite its advantages, there are few studies on forecasting VHI as a future projection, particularly using up-to-date and effective machine learning methods.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2022
Land surface temperature (LST) prediction is of great importance for climate change, ecology, environmental and industrial studies. These studies require accurate LST map predictions considering both spatial and temporal dynamics. In this study, multilayer perceptron (MLP), long short-term memory (LSTM) and an integrated machine learning model, namely Convolutional LSTM (ConvLSTM), were utilized for one step ahead LST prediction.
View Article and Find Full Text PDFThis study tested whether machine learning (ML) methods can effectively separate individual plants from complex 3D canopy laser scans as a prerequisite to analyzing particular plant features. For this, we scanned mung bean and chickpea crops with PlantEye (R) laser scanners. Firstly, we segmented the crop canopies from the background in 3D space using the Region Growing Segmentation algorithm.
View Article and Find Full Text PDF