Publications by authors named "Serini S"

Hypertension affects 32% of adults worldwide, leading to a significant global consumption of cardiovascular medications. Atenolol, a β-adrenergic receptor blocker, is widely prescribed for cardiovascular diseases such as hypertension, angina pectoris, and myocardial infarction. According to the Biopharmaceutics Classification System (BCS), atenolol belongs to Class III, characterized by high solubility but low permeability.

View Article and Find Full Text PDF

Therapeutic proteins, the fastest growing class of pharmaceuticals, are subject to rapid proteolytic degradation in vivo, rendering them inactive. Sophisticated drug delivery systems that maintain protein stability, prolong therapeutic effects, and reduce administration frequency are urgently required. Herein, a mechanoresponsive hydrogel is developed contained within a soft robotic drug delivery (SRDD) device.

View Article and Find Full Text PDF

Chemotherapy-induced cognitive impairment or "chemobrain" is a prevalent long-term complication of chemotherapy and one of the more devastating. Most of the studies performed so far to identify the cognitive dysfunctions induced by antineoplastic chemotherapies have been focused on treatment with anthracyclines, frequently administered to breast cancer patients, a population that, after treatment, shows a high possibility of long survival and, consequently, of chemobrain development. In the last few years, different possible strategies have been explored to prevent or reduce chemobrain induced by the anthracycline doxorubicin (DOX), known to promote oxidative stress and inflammation, which have been strongly implicated in the development of this brain dysfunction.

View Article and Find Full Text PDF

Phenolic compounds are bioactive phytochemicals showing a wide range of pharmacological activities, including anti-inflammatory, antioxidant, immunomodulatory, and anticancer effects. Moreover, they are associated with fewer side effects compared to most currently used antitumor drugs. Combinations of phenolic compounds with commonly used drugs have been largely studied as an approach aimed at enhancing the efficacy of anticancer drugs and reducing their deleterious systemic effects.

View Article and Find Full Text PDF

Different strategies have been investigated for a more satisfactory treatment of advanced breast cancer, including the adjuvant use of omega-3 polyunsaturated fatty acids (PUFAs). These nutritional compounds have been shown to possess potent anti-inflammatory and antiangiogenic activities, the capacity to affect transduction pathways/receptors involved in cell growth and to reprogram tumor microenvironment. Omega-3 PUFA-containing nanoformulations designed for drug delivery in breast cancer were shown to potentiate the effects of enclosed drugs, enhance drug delivery to target sites, and minimize drug-induced side effects.

View Article and Find Full Text PDF

Linolenic acid (LNA) is the most highly consumed polyunsaturated fatty acid found in the human diet. It possesses anti-inflammatory effects and the ability to reverse skin-related disorders related to its deficiency. The purpose of this work was to encapsulate LNA in solid lipid nanoparticles (SLNs) based on curcumin, resveratrol and capsaicin for the treatment of atopic dermatitis.

View Article and Find Full Text PDF

Long-chain Omega-3 polyunsaturated fatty acids (Omega-3 PUFAs) are widely recognized as powerful negative regulators of acute inflammation. However, the precise role exerted by these dietary compounds during the healing process is still largely unknown, and there is increasing interest in understanding their specific effects on the implicated cells/molecular factors. Particular attention is being focused also on their potential clinical application in chronic pathologies characterized by delayed and impaired healing, such as diabetes and vascular diseases in lower limbs.

View Article and Find Full Text PDF

We successfully prepared and characterized a hyaluronic acid- and folic acid-based hydrogel for the delivery of cisplatin (GEL-CIS) with the aim to induce specific and efficient incorporation of CIS into ovarian cancer (OC) cells, improve its antineoplastic effect and avoid CIS-resistance. The slow and controlled release of the drug from the polymeric network and its swelling degree at physiologic pH suggested its suitability for CIS delivery in OC. We compared here the effects of pure CIS to that of GEL-CIS on human OC cell lines, either wild type or CIS-resistant, in basal conditions and in the presence of macrophage-derived conditioned medium, mimicking the action of tumor-associated macrophages in vivo.

View Article and Find Full Text PDF

Melanoma is one of the most aggressive forms of skin cancer, with few possibilities for therapeutic approaches, due to its multi-drug resistance and, consequently, low survival rate for patients. Conventional therapies for treatment melanoma include radiotherapy, chemotherapy, targeted therapy, and immunotherapy, which have various side effects. For this reason, in recent years, pharmaceutical and biomedical research has focused on new sito-specific alternative therapeutic strategies.

View Article and Find Full Text PDF

Plenty of evidence supports the health effects exerted by dietary supplements containing phytochemicals, but the actual efficacy and safety of their combinations have been seldom experimentally evaluated. On this basis, we investigated in vitro the antioxidant/antineoplastic efficacy and anti-aging activity of a dietary supplement containing sulforaphane (SFN), a sulfur-isothiocyanate present in broccoli, combined with the patented extract Fernblock XP (FB), obtained from the tropical fern . We evaluated the effect of SFN and FB, alone or in combination, on migration ability, matrix metalloproteinases (MMP) production, neoangiogenic potential and inflammasome activation in human WM115 and WM266-4 melanoma cells.

View Article and Find Full Text PDF

The long-chain omega-3 polyunsaturated fatty acids (LC-omega-3 PUFAs) eicosapentaenoic acid and docosahexaenoic acid are the most popular dietary supplements recommended for the prevention/management of lipid dysmetabolisms and related diseases. However, remarkable inconsistencies exist among the outcomes of the human intervention studies in this field, which contrast with the impressive homogeneity of positive results of most of the preclinical studies. In the present review, we will firstly examine a series of factors-such as background diet composition, gut microbiota and genetic/epigenetic variants, which may lie beneath these inconsistencies.

View Article and Find Full Text PDF

We recently found that the dietary long chain omega-3 polyunsaturated fatty acid (LC-ω-3 PUFA), docosahexaenoic acid (DHA), showed enhanced antineoplastic activity against colon cancer cells if encapsulated in resveratrol-based solid lipid nanoparticles (RV-SLNs). In the present study, we investigated whether the DHA enclosed in RV-SLNs (DHA-RV-SLNs) could have the potential of attenuating irritation and inflammation caused by environmental factors at the skin level. To this aim, we used two keratinocyte lines (HaCaT and NCTC 2544 cells) and exposed them to the cytotoxic action of the surfactant, sodium dodecyl sulfate (SDS), as an in vitro model of irritation, or to the pro-inflammatory activity of the cytokine TNF-α.

View Article and Find Full Text PDF

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are dietary factors involved in the prevention of cardiovascular, inflammatory, and neoplastic diseases. A multidisciplinary approach - based on recent findings in nutritional science, lipid biochemistry, biotechnology, and biology of inflammation and cancer - has been recently employed to develop ω-3 PUFA-containing nanoformulations with an aim to protect these fatty acids from degradation, increase their bioavailability and delivery to target tissues, and, thus, enhance their bioactivity. In some cases, these nanoformulations were designed to administer ω-3 PUFAs in combination with other nutraceuticals or conventional/innovative drugs.

View Article and Find Full Text PDF

Xanthan gum-based microspheres and hydrogels, useful for targeted colorectal release of omega-3 polyunsaturated fatty acids (PUFAs), were successfully prepared and characterized. In particular, the microsphere size, as well as the high hydrogel swelling degree at pH 7.4, and the omega-3 PUFA loading efficiency of both the materials suggested their suitability for colorectal delivery.

View Article and Find Full Text PDF

The recently developed therapeutic strategies have led to unprecedented improvements in the control of metastatic melanoma and in the survival of specific subgroups of patients. However, drug resistance, low response rates, and undesired side effects make these treatments not suitable or tolerable for all the patients, and chemotherapeutic treatments appear still indispensable, at least for subgroups of patients. New combinatory strategies are also under investigation as tailored treatments or salvage therapies, including combined treatments of immunotherapy with conventional chemotherapy.

View Article and Find Full Text PDF

Background: Acne vulgaris is a chronic inflammatory skin disease, commonly treated with topical or systemic drugs, according to the severity of the condition. Retinoids and antibiotic compounds are considered cornerstone approaches in this condition. However, low adherence to the therapy and the issue of bacterial resistance undermine the efficacy in the long term.

View Article and Find Full Text PDF

New strategies are being investigated to ameliorate the efficacy and reduce the toxicity of the drugs currently used in colorectal cancer (CRC), one of the most common malignancies in the Western world. Data have been accumulated demonstrating that the antineoplastic therapies with either conventional or single-targeted drugs could take advantage from a combined treatment with omega-3 polyunsaturated fatty acids (omega-3 PUFA). These nutrients, shown to be safe at the dosage generally used in human trials, are able to modulate molecules involved in colon cancer cell growth and survival.

View Article and Find Full Text PDF

Purpose Of Review: Recently, concerns have been raised with regard to the recommended doses of marine long-chain omega-3 polyunsaturated fatty acids (LC-omega-3 PUFAs) especially in relation to cancer risk and treatment. There is urgent need to clarify this point. This review considers the most recent evidence related to the potential risk of developing cancer with high LC-omega-3 PUFA intakes, and possible research strategies to better elucidate this matter.

View Article and Find Full Text PDF

It has been demonstrated that ω-3 polyunsaturated fatty acids (ω-3 PUFA) may exert a beneficial role as adjuvants in the prevention and treatment of many disorders, including cardiovascular diseases and cancer. Particularly, several in vitro and in vivo preclinical studies have shown the antitumor activity of ω-3 PUFA in different kinds of cancers, and several human studies have shown that ω-3 PUFA are able to decrease the risk of a series of cardiovascular diseases. Several mechanisms have been proposed to explain their pleiotropic beneficial effects.

View Article and Find Full Text PDF

A potential complementary role of the dietary long-chain n-3 polyunsaturated fatty acids (LCn-3 PUFA) in combination with innovative mono-targeted therapies has recently been proposed. These compounds are thought to act pleiotropically to prevent the development and progression of a variety of cancers, including breast cancer. We hereinafter critically analyze the reports investigating the ability of LCn-3 PUFA to modulate the Ras/ERK and the phosphoinositide survival signaling pathways often aberrantly activated in breast cancer and representing the main targets of innovative therapies.

View Article and Find Full Text PDF

Background: We previously found that docosahexaenoic acid (DHA), a dietary polyunsaturated fatty acid present at high level in fatty fish, inhibited cell growth and induced differentiation of melanoma cells in vitro by increasing nuclear β-catenin content. An anti-neoplastic role of nuclear β-catenin was suggested in melanoma, and related to the presence in the melanocyte lineage of the microphtalmia transcription factor (MITF), which interferes with the transcription of β-catenin/TCF/LEF pro-invasive target genes.

Objective: In the present work we investigated if DHA could inhibit the invasive potential of melanoma cells, and if this effect could be related to DHA-induced alterations of the Wnt/β-catenin signaling, including changes in MITF expression.

View Article and Find Full Text PDF

Considerable debate exists regarding the potential antineoplastic effect of dietary long-chain n-3 PUFA contained in fatty fishes. Since the majority of published data has proven that their intake does not induce toxic or carcinogenic effects in humans, their possible preventive use against cancer has been suggested. On the other hand, it is unlikely that they could be effective in cancer patients as a single therapy.

View Article and Find Full Text PDF

Introduction: It has become increasingly clear that dietary habits may affect the risk/progression of chronic diseases with a pathogenic inflammatory component, such as colorectal cancer. Considerable attention has been directed toward the ability of nutritional agents to target key molecular pathways involved in these inflammatory-related diseases.

Areas Covered: ω-3 Polyunsaturated fatty acids (PUFA) and their oxidative metabolites have attracted considerable interest as possible anti-inflammatory and anti-cancer agents, especially in areas such as the large bowel, where the influence of orally introduced substances is high and tumors show deranged PUFA patterns.

View Article and Find Full Text PDF