Publications by authors named "Serife O Hacioglu"

In this study, six different donor-π-acceptor-π-donor-acceptor type random co-polymers containing benzodithiophene as a donor, benzooxadiazole (BO), and thieno[3,4-c]pyrrole-4,6-dione (TPD) as acceptor, have been synthesized and characterized. In addition to the acceptor core ratio at different values, the effect of aromatic bridge structures on the optical, electronic, and photovoltaic properties of six different random co-polymers is investigated by using thiophene and selenophene structures as aromatic bridge units. To investigate how the acceptor unit ratio and replacement of aromatic bridge units impact the structural, electronic, and optical properties of the polymers, density functional theory (DFT) calculations are carried out for the tetramer models.

View Article and Find Full Text PDF

The combination of supramolecules and conducting polymers (CPs) has gained much attention for the development of new immobilization matrices for biomolecules. Herein, an amperometric biosensor based on a novel conducting polymer, poly(2-(2-octyldodecyl)-4,7-di(selenoph-2-yl)-2H-benzo[d][1,2,3]triazole)) (PSBTz) and β-cyclodextrin (β-CD) for the detection of cholesterol, was constructed. The PSBTz film with β-CD was deposited on a graphite electrode by electropolymerization technique to achieve a suitable matrix for enzyme immobilization.

View Article and Find Full Text PDF

Material modification is one of the hot topics recently. Hereby a novel functional monomer, 2-(4-nitrophenyl)-4,7-di(thiophen-2-yl)-1H-benzo[d]imidazole (BIPN), was synthesized for matrix generation through electrochemical polymerization. Its conducting polymer was successfully used for the biolayer construction in the biosensor preparation.

View Article and Find Full Text PDF

A new type of amperometric cholesterol biosensor was fabricated to improve the biosensor characteristics such as sensitivity and reliability. For this purpose, a novel immobilization matrix 2-(4-fluorophenyl)-4,7-di(thiophene-2-yl)-1H-benzo[d]imidazole (BIPF) was electrochemically deposited on a graphite electrode and used as a matrix for the immobilization of cholesterol oxidase (ChOx). Due to strong π-π stacking of aromatic groups in the structures of polymer backbone and enzyme molecule, one can easily achieve a sensitive and reliable biosensor without using any membrane or covalent bond formation between the enzyme molecules and polymer surface.

View Article and Find Full Text PDF