Publications by authors named "Serhii M Kukhtaruk"

Reservoir computing is a concept involving mapping signals onto a high-dimensional phase space of a dynamical system called "reservoir" for subsequent recognition by an artificial neural network. We implement this concept in a nanodevice consisting of a sandwich of a semiconductor phonon waveguide and a patterned ferromagnetic layer. A pulsed write-laser encodes input signals into propagating phonon wavepackets, interacting with ferromagnetic magnons.

View Article and Find Full Text PDF

The functionality of phonon-based quantum devices largely depends on the efficiency of the interaction of phonons with other excitations. For phonon frequencies above 20 GHz, generation and detection of the phonon quanta can be monitored through photons. The photon-phonon interaction can be enormously strengthened by involving an intermediate resonant quasiparticle, e.

View Article and Find Full Text PDF

The modified rigorous coupled-wave analysis technique is developed to describe the optical characteristics of the plasmonic structures with the grating-gated delta-thin conductive channel in the far- and near-field zones of electromagnetic waves. The technique was applied for analysis of the resonant properties of AlGaN/GaN heterostructures combined with a deeply subwavelength metallic grating, which facilitates the excitation of the two-dimensional plasmons in the terahertz (THz) frequency range. The convergence of the calculations at the frequencies near the plasmon resonances is discussed.

View Article and Find Full Text PDF

In nanoscale communications, high-frequency surface acoustic waves are becoming effective data carriers and encoders. On-chip communications require acoustic wave propagation along nanocorrugated surfaces which strongly scatter traditional Rayleigh waves. Here, we propose the delivery of information using subsurface acoustic waves with hypersound frequencies of ∼20 GHz, which is a nanoscale analogue of subsurface sound waves in the ocean.

View Article and Find Full Text PDF

Energy harvesting is a concept which makes dissipated heat useful by transferring thermal energy to other excitations. Most of the existing principles are realized in systems which are heated continuously. We present the concept of high-frequency energy harvesting where the dissipated heat in a sample excites resonant magnons in a thin ferromagnetic metal layer.

View Article and Find Full Text PDF