In this study, we explored the extent to which hydrotropes can be used to increase the aqueous solubilities of redox-active compounds previously used in flow batteries. We measured how five hydrotropes influenced the solubilities of five redox-active compounds already soluble in aqueous electrolytes (≥0.5 M).
View Article and Find Full Text PDFReliable corrosion monitoring of natural gas transmission lines is a major tool providing a foundation for safe management of natural gas infrastructures. Through the development of membrane-based electrochemical sensors which are able to function in low-conductivity gas environments, corrosion monitoring practices can be further strengthened by real-time monitoring of key risk factors such as relative humidity and corrosion rates of corrodible structures. In this work, we demonstrate and validate how a 4-electrode conductivity sensor can provide a means to monitor relative humidity in gases via electrochemical impedance spectroscopy through finite element analysis (FEA).
View Article and Find Full Text PDFCO2 solubility data in the natural formation brine, synthetic formation brine, and synthetic NaCl+CaCl2 brine were collected at the pressures from 100 to 200 bar, temperatures from 323 to 423 K. Experimental results demonstrate that the CO2 solubility in the synthetic formation brines can be reliably represented by that in the synthetic NaCl+CaCl2 brines. We extended our previously developed model (PSUCO2) to calculate CO2 solubility in aqueous mixed-salt solution by using the additivity rule of the Setschenow coefficients of the individual ions (Na(+), Ca(2+), Mg(2+), K(+), Cl(-), and SO4(2-)).
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2012
Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100°C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260°C) - zeta potentials and isoelectric points - for metal oxides, including SiO(2), SnO(2), ZrO(2), TiO(2), and Fe(3)O(4), were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation.
View Article and Find Full Text PDFAn electrophoresis cell developed in our laboratory was utilized to determine the zeta potential at the SnO(2) (cassiterite)/aqueous solution (10(-3) mol kg(-1) NaCl) interface over the temperature range from 25 to 260 degrees C. Experimental techniques and methods for the calculation of zeta potential at elevated temperature are described. From the obtained zeta potential data as a function of pH, the isoelectric points (IEPs) of SnO(2) were obtained for the first time.
View Article and Find Full Text PDFThe electrophoretic mobility, which reflects the zeta potential of a solid material, is an important experimental quantity providing information about the electrical double layer at the solid/liquid interface. A new high temperature electrophoresis cell was developed suitable for electrophoretic mobility measurements of dispersed nanosize particles up to 150 degrees C and 40 bars. Amorphous silica (SiO(2)) particle size standards were used to test the particle size detection limit of the new instrument at 25, 100, and 150 degrees C and several pH values.
View Article and Find Full Text PDF