Publications by authors named "Sergiy Korposh"

Introduction: Leakage of orogastric secretions past the cuff of a tracheal tube is a contributory factor in ventilator-associated pneumonia. Current bench test methods specified in the International Standard for Anaesthetic and Respiratory Equipment (EN ISO 5361:2023) to test cuff leakage involve using a glass or plastic rigid cylinder model of the trachea. There is a need for more realistic models to inform cuff leakage.

View Article and Find Full Text PDF

Incorrect endotracheal tube (ETT) cuff inflation pressure causes significant problems for intubated patients. The technical development and first use of a smart ETT for measurements at the cuff-trachea interface during mechanical ventilation are described. The intra-tracheal multiplexed sensing (iTraXS) ETT contains integrated optical fibre sensors to measure contact pressure and blood perfusion.

View Article and Find Full Text PDF

Ammonia gas sensors were fabricated via layer-by-layer (LbL) deposition of diazo resin (DAR) and a binary mixture of tetrakis(4-sulfophenyl)porphine (TSPP) and poly(styrene sulfonate) (PSS) onto the core of a multimode U-bent optical fiber. The penetration of light transferred into the evanescent field was enhanced by stripping the polymer cladding and coating the fiber core. The electrostatic interaction between the diazonium ion in DAR and the sulfonate residues in TSPP and PSS was converted into covalent bonds using UV irradiation.

View Article and Find Full Text PDF

A tip-based fibreoptic localised surface plasmon resonance (LSPR) sensor is reported for the sensing of volatile organic compounds (VOCs). The sensor is developed by coating the tip of a multi-mode optical fibre with gold nanoparticles (size: 40 nm) via a chemisorption process and further functionalisation with the HKUST-1 metal-organic framework (MOF) via a layer-by-layer process. Sensors coated with different cycles of MOFs (40, 80 and 120) corresponding to different crystallisation processes are reported.

View Article and Find Full Text PDF

Highly sensitive and selective long-period grating (LPG) fiber-optic sensors modified with molecularly imprinted TiO nanothin films were fabricated. The films were deposited onto the surface of the optical fiber via liquid-phase deposition (LPD), using tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) as a template. Three LPG resonance bands were monitored during film deposition, which was of duration 4.

View Article and Find Full Text PDF

Dabrafenib is one of the most widely used of the new generation of targeted anti-cancer drugs. However, its therapeutic window varies for different patients and so there is an unmet need for methods to monitor the dose of drug which the patient receives and at the specific site where it acts. In the case of cancers, it is critical to measure the concentration of drug not just in the bloodstream overall, but in or near tumours, as these will not be the same over multiple time periods.

View Article and Find Full Text PDF

The development of reliable, affordable and efficient sensors is a key step in providing tools for efficient monitoring of critical environmental parameters. This review focuses on the use of tapered optical fibres as an environmental sensing platform. Tapered fibres allow access to the evanescent wave of the propagating mode, which can be exploited to facilitate chemical sensing by spectroscopic evaluation of the medium surrounding the optical fibre, by measurement of the refractive index of the medium, or by coupling to other waveguides formed of chemically sensitive materials.

View Article and Find Full Text PDF

A long period grating (LPG) modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of individual volatile organic compounds (VOCs) and their mixtures. The mesoporous film consisted of an inorganic part, SiO₂ nanoparticles (NPs), along with an organic moiety of poly(allylamine hydrochloride) polycation PAH, which was finally infused with the functional compound, p-sulphanato calix[4]arene (CA[4]) or p-sulphanato calix[8]arene (CA[8]). The LPG sensor was designed to operate at the phase matching turning point to provide the highest sensitivity.

View Article and Find Full Text PDF

Objective: To develop a compact probe that can be used to monitor humidity in ventilator care equipment. A mesoporous film of alternate layers of Poly(allylamine hydrochloride) (PAH) and silica (SiO2) nanoparticles (bilayers), deposited onto an optical fibre was used. The sensing film behaves as a Fabry-Perot cavity of low-finesse where the absorption of water vapour changes the optical thickness and produces a change in reflection proportional to humidity.

View Article and Find Full Text PDF

An optical fibre long period grating (LPG) sensor modified with molecularly imprinted polymer nanoparticles (nanoMIPs) for the specific detection of antibiotics is presented. The operation of the sensor is based on the measurement of changes in refractive index induced by the interaction of nanoMIPs deposited onto the cladding of the LPG with free vancomycin (VA). The binding of nanoMIPs to vancomycin was characterised by a binding constant of 4.

View Article and Find Full Text PDF

TiO(2) nano-thin films with imprinted (R)- and (S)-enantiomers of propranolol, 1,1'-bi-naphthol, and 2-(4-isobutylphenyl)-propionic acid were fabricated on quartz plates by spin-coating their solutions with Ti(O-(n)Bu)(4) in a toluene-ethanol mixture (1:1, v/v). After template removal, the imprinted films showed better binding for original templates than to the corresponding enantiomers. The assessment of template incorporation, template removal, and re-binding was conducted through UV-vis measurements.

View Article and Find Full Text PDF

A novel approach to chemical application of long period grating (LPG) optical fibers was demonstrated, which were modified with a film nanoassembled by the alternate deposition of SiO(2) nanoparticles (SiO(2) NPs) and poly(diallyldimethyl ammonium chloride) (PDDA). Nanopores of the sensor film could be used for sensitive adsorption of chemical species in water, which induced the changes in the refractive index (RI) of the light propagating in the cladding mode of the optical fiber, with a concomitant effect on the transmission spectrum in the LPG region. The prepared fiber sensor was highly sensitive to the change in the RI of the surrounding medium and the response time was very fast within 10 s.

View Article and Find Full Text PDF

Quartz crystal microbalance (QCM) gas sensors based on the alternate adsorption of TiO(2) and polyacrilic acid (PAA) were developed for the sensitive detection of amine odors. Individual TiO(2) gel layers could be regularly assembled with a thickness of approximately 0.3 nm by the gas-phase surface sol-gel process (GSSG).

View Article and Find Full Text PDF