The N-terminal domain of the retinoblastoma (Rb) tumor suppressor protein (RbN) harbors in-frame exon deletions in partially penetrant hereditary retinoblastomas and is known to impair cell growth and tumorigenesis. However, how such RbN deletions contribute to Rb tumor- and growth-suppressive functions is unknown. Here we establish that RbN directly inhibits DNA replication initiation and elongation using a bipartite mechanism involving N-terminal exons lost in cancer.
View Article and Find Full Text PDFThe mechanism by which amyloid beta (Aβ) causes neuronal dysfunction and/or death in Alzheimer's disease (AD) is unclear. Previously, we showed that Aβ inhibits several microtubule-dependent kinesin motors essential for mitosis and also present in mature neurons. Here, we show that inhibition of kinesin 5 (Eg5) by Aβ blocks neuronal function by reducing transport of neurotrophin and neurotransmitter receptors to the cell surface.
View Article and Find Full Text PDFChromosome mis-segregation and aneuploidy are greatly induced in Alzheimer's disease and models thereof by mutant forms of the APP and PS proteins and by their product, the Ab peptide. Here we employ human somatic cells and Xenopus egg extracts to show that Aβ impairs the assembly and maintenance of the mitotic spindle. Mechanistically, these defects result from Aβ's inhibition of mitotic motor kinesins, including Eg5, KIF4A and MCAK.
View Article and Find Full Text PDFThe microtubule-associated protein Tau plays a crucial role in regulating the dynamic stability of microtubules during neuronal development and synaptic transmission. In a group of neurodegenerative diseases, such as Alzheimer disease and other tauopathies, conformational changes in Tau are associated with the initial stages of disease pathology. Folding of Tau into the MC1 conformation, where the amino acids at residues 7-9 interact with residues 312-342, is one of the earliest pathological alterations of Tau in Alzheimer disease.
View Article and Find Full Text PDFImbalanced protein load within cells is a critical aspect for most diseases of aging. In particular, the accumulation of proteins into neurotoxic aggregates is a common thread for a host of neurodegenerative diseases. Our previous work demonstrated that age-related changes to the cellular chaperone repertoire contributes to abnormal buildup of the microtubule-associated protein tau that accumulates in a group of diseases termed tauopathies, the most common being Alzheimer's disease.
View Article and Find Full Text PDFMAPK activity is important during mitosis for spindle assembly and maintenance of the spindle checkpoint arrest. We previously identified B-Raf as a critical activator of the MAPK cascade during mitosis in Xenopus egg extracts and showed that B-Raf activation is regulated in an M-phase-dependent manner. The mechanism that mediates B-Raf activation at mitosis has not been elucidated.
View Article and Find Full Text PDFActivation of the MAPK cascade during mitosis is critical for spindle assembly and normal mitotic progression. The underlying regulatory mechanisms that control activation of the MEK/MAPK cascade during mitosis are poorly understood. Here we purified and characterized the MEK kinase activity present in Xenopus M phase-arrested egg extracts.
View Article and Find Full Text PDF