We propose a concept for the folding and self-assembly of the pore-forming TatA complex from the Twin-arginine translocase and of other membrane proteins based on electrostatic "charge zippers." Each subunit of TatA consists of a transmembrane segment, an amphiphilic helix (APH), and a C-terminal densely charged region (DCR). The sequence of charges in the DCR is complementary to the charge pattern on the APH, suggesting that the protein can be "zipped up" by a ladder of seven salt bridges.
View Article and Find Full Text PDF