By assimilating shape memory alloys with mathematical multifractal-type objects, a theoretical model based on Scale Relativity Theory in the form of The Multifractal Theory of Motion, in order to explain the mechanical behavior of such material, is proposed. The model is validated by analyzing the mechanical behavior of Cu-Al-Zn shape memory alloy with various chemical compositions. More precisely, the multifractal tunnel effect can "mime" the mechanical hysteresis of such a material, a situation in which a direct correspondence for several mechanical properties of Cu-Al-Zn is highlighted (the chemical composition can be correlated with the shapes of the curves controlled through the multifractality degree, while the areas delimited by the same curves can be correlated with the multifractal specific potential, as a measure of the mechanical memory degree).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2021
In vitro electrochemical characterization and in vivo implantation in an animal model were employed to evaluate the degradation behaviour and the biological activity of FeMnSi and FeMnSiCa alloys obtained using UltraCast (Ar atmosphere) melting. Electrochemical characterization was based on open circuit potential measurement, electrochemical impedance spectroscopy and potentiodynamic polarization techniques while the alloys were immersed in Ringer's solution at 37 °C for 7 days. Higher corrosion rates were measured for the Ca-containing material, resulting from inefficient passivation of the metal surface by oxy-hydroxide products.
View Article and Find Full Text PDFEvidence suggests that older driver safety may be improved by good vehicle maintenance, in-vehicle advanced technologies, and proper vehicle adaptations. This study explored the prevalence of several measures of vehicle maintenance and damage among older drivers through inspection of their vehicles. We also investigated the prevalence of in-vehicle technologies and aftermarket adaptations.
View Article and Find Full Text PDFThe purpose of the present study was to gain a better understanding of the types of in-vehicle technologies being used by older drivers as well as older drivers' use, learning, and perceptions of safety related to these technologies among a large cohort of older drivers at multiple sites in the United States. A secondary purpose was to explore the prevalence of aftermarket vehicle adaptations and how older adults go about making adaptations and how they learn to use them. The study utilized baseline questionnaire data from 2990 participants from the Longitudinal Research on Aging Drivers (LongROAD) study.
View Article and Find Full Text PDFAdvanced in-vehicle technologies have been proposed as a potential way to keep older adults driving for as long as they can safely do so, by taking into account the common declines in functional abilities experienced by older adults. The purpose of this report was to synthesize the knowledge about older drivers and advanced in-vehicle technologies, focusing on three areas: use (how older drivers use these technologies), perception (what they think about the technologies), and outcomes (the safety and/or comfort benefits of the technologies). Twelve technologies were selected for review and grouped into three categories: crash avoidance systems (lane departure warning, curve speed warning, forward collision warning, blind spot warning, parking assistance); in-vehicle information systems (navigation assistance, intelligent speed adaptation); and other systems (adaptive cruise control, automatic crash notification, night vision enhancement, adaptive headlight, voice activated control).
View Article and Find Full Text PDF