Transformers have achieved remarkable performance in multivariate time series(MTS) forecasting due to their capability to capture long-term dependencies. However, the canonical attention mechanism has two key limitations: (1) its quadratic time complexity limits the sequence length, and (2) it generates future values from the entire historical sequence. To address this, we propose a Dozer Attention mechanism consisting of three sparse components: (1) Local, each query exclusively attends to keys within a localized window of neighboring time steps.
View Article and Find Full Text PDFMultivariate time series forecasting is a critical problem in many real-world scenarios. Recent advances in deep learning have significantly enhanced the ability to tackle such problems. However, a primary challenge in time series forecasting comes from the imbalanced time series data that include extreme events.
View Article and Find Full Text PDFBackground: The advance in single-cell RNA sequencing technology has enhanced the analysis of cell development by profiling heterogeneous cells in individual cell resolution. In recent years, many trajectory inference methods have been developed. They have focused on using the graph method to infer the trajectory using single-cell data, and then calculate the geodesic distance as the pseudotime.
View Article and Find Full Text PDFCancer is an umbrella term that includes a range of disorders, from those that are fast-growing and lethal to indolent lesions with low or delayed potential for progression to death. The treatment options, as well as treatment success, are highly dependent on the correct subtyping of individual patients. With the advancement of high-throughput platforms, we have the opportunity to differentiate among cancer subtypes from a holistic perspective that takes into consideration phenomena at different molecular levels (mRNA, methylation, etc.
View Article and Find Full Text PDFThe creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.
View Article and Find Full Text PDFComputational Neuroscience is an emerging field that provides unique opportunities to study complex brain structures through realistic neural simulations. However, as biological details are added to models, the execution time for the simulation becomes longer. Graphics Processing Units (GPUs) are now being utilized to accelerate simulations due to their ability to perform computations in parallel.
View Article and Find Full Text PDFIn the past three decades, the interest in trust has grown significantly due to its important role in our modern society. Everyday social experience involves "confidence" among people, which can be interpreted at the neurological level of a human brain. Recent studies suggest that oxytocin is a centrally-acting neurotransmitter important in the development and alteration of trust.
View Article and Find Full Text PDF