Background: Nitroaromatic and chloronitroaromatic compounds have been a subject of great interest in industry and recently in medical-pharmaceutic field. 2-Chloro-4-nitro/2-chloro-5-nitrobenzoic acids and 4-nitrobenzoic acid are promising new agents for the treatment of main infectious killing diseases in the world: immunodeficiency diseases and tuberculosis.
Results: New ethanolamine nitro/chloronitrobenzoates were synthesized and characterized by X-ray crystallography, UV-vis, FT-IR and elementary analysis techniques.
The structure-toxicity relationships for a series of singular human stomatological pharmaceuticals preparations and in mixture with Iodoform on Hydractinia echinata were obtained and their synergism was analyzed through the Metamorphosis Reduction Concentration (MRC50) within the "Köln model". The differences manifested between the total and individual components of the samples and mixtures, associated with toxic versus non-toxic synergism, are dependent on three essential factors of synthesis (the nature, the concentration and the number) besides manifested isotoxicity of the given components. The method represents a practical alternative useful for the reduction of experimental tests on animal to the lowest possible level, in accordance to the '3Rs' (reduce, reuse and recycle) integrative concept.
View Article and Find Full Text PDFStructure-toxicity relationships for a series of 75 azo and azo-anilide dyes and five diazonium salts were developed using Hydractinia echinata (H. echinata) as model species. In addition, based on these relationships, predictions for 58 other azo-dyes were made.
View Article and Find Full Text PDFIn this paper, a toxicity study for a series of anilides of Naphthol-AS type is presented. The toxicity of the model compounds was determined by using the Hydractinia echinata (Hydrozoa) test system. Conformational analysis of Naphthol-AS derivatives was performed to elucidate the possible enzymatic hydrolysis mechanism of these compounds.
View Article and Find Full Text PDFInt J Mol Sci
November 2009
Aiming to provide a unified picture of computed activity - quantitative structure activity relationships, the so called Köln (ESIP-ElementSpecificInfluenceParameter) model for activity and Timisoara (Spectral-SAR) formulation of QSAR were pooled in order to assess the toxicity modeling and inter-toxicity correlation maps for aquatic organisms against paradigmatic organic compounds. The Köln ESIP model for estimation of a compound toxicity is based on the experimental measurement expressing the direct action of chemicals on the organism Hydractinia echinata so that the structural influence parameters are reflected by the metamorphosis degree itself. As such, the calculation of the structural parameters is absolutely necessary for correct evaluation and interpretation of the evolution of M(easured) and the C(computed) values.
View Article and Find Full Text PDF