Environmental release of wastewater that contains cytostatic drugs can cause genotoxic impact, since these drugs act directly on the genetic material of aquatic organisms. Thus, the aim of this study was to evaluate the removal of the cytostatic drugs cytarabine (CTR) and methotrexate (MTX) using different physico-chemical methods individually (i.e.
View Article and Find Full Text PDFFunctionalized textiles have been increasingly used for enhancing antimicrobial or antiviral (antipathogenic) action. Those pathogens can cause recurring diseases by direct or indirect transmission. Particularly, airborne microorganisms may cause respiratory diseases or skin infections like allergies and acne and the use of inorganic agents such as metal and metal oxides has proven effective in antipathogen applications.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
March 2023
The literature reports the presence of multiresistant microorganisms in wastewater discharged from municipal and hospital wastewater treatment plants (WWTPs). This has led to questions concerning the disinfection efficiency of the treatments applied. Thus, this study aimed to assess the efficiency of different chemical oxidation methods to disinfect and to degrade bacterial plasmids present in hospital wastewaters, to avoid the dispersion of antibiotic resistance genes in the environment.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
November 2022
The goal of this study was to assess the efficiency of antibiotic degradation applying different chemical treatment methods and their combinations. Thus, improvement in the efficiency of these methods when combined was quantified. The methods tested to degrade/mineralize the antibiotics amoxicillin (AMX) and ciprofloxacin (CIP) under different pH conditions (4, 7 and 10) were ultra-violet irradiation (UV, ultrasound (US), hydrogen peroxide (HO) and ozone (O) alone and in combination.
View Article and Find Full Text PDFStrategies for developing materials with the functionality to combat bacterial infection are targets for applications such as smart bandages and bone tissue integration. This work milestone was to develop ZnO-polyetherimide (ZnO/PEI) composite scaffolds with antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The electrospinning process using suspensions of PEI with different ZnO nanoparticles content were heightened to promote spinnability, jet stability, and fibers with morphological homogeneity.
View Article and Find Full Text PDF