Thyroid hormones, T (triiodothyronine) and T (thyroxine), induce a variety of long-term effects on important physiological functions, ranging from development and growth to metabolism regulation, by interacting with specific nuclear or cytosolic receptors. Extranuclear or nongenomic effects of thyroid hormones are mediated by plasma membrane or cytoplasmic receptors, mainly by αvβ3 integrin, and are independent of protein synthesis. A wide variety of nongenomic effects have now been recognized to be elicited through the binding of thyroid hormones to this receptor, which is mainly involved in angiogenesis, as well as in cell cancer proliferation.
View Article and Find Full Text PDFExtranuclear or nongenomic effects of thyroid hormones are mediated by receptors located at the plasma membrane or inside cells, and are independent of protein synthesis. Recently the alphaVbeta3 integrin was identified as a cell membrane receptor for thyroid hormones, and a wide variety of nongenomic effects have now been shown to be induced through binding of thyroid hormones to this receptor. However, also other thyroid hormone receptors can produce nongenomic effects, including the cytoplasmic TRalpha and TRbeta receptors and probably also a G protein-coupled membrane receptor, and increasing importance is now given to thyroid hormone metabolites like 3,5-diiodothyronine and reverse T(3) that can mimick some nongenomic effects of T(3) and T(4).
View Article and Find Full Text PDFNongenomic effects of thyroid hormones on Na+-K+-ATPase activity were studied in chick embryo hepatocytes at two different developmental stages, 14 and 19 days of embryonal age, and the signal transduction pathways involved were characterized. Our data showed the following. 1) 3,5,3'-Triiodo-L-thyronine (T3) and 3,5-diiodo-L-thyronine (3,5-T2) rapidly induced a transient inhibitory effect on the Na+-K+-ATPase; the extent and duration depended on the developmental age of the cells.
View Article and Find Full Text PDFExtranuclear or nongenomic effects of thyroid hormones do not require interaction with the nuclear receptor, but are probably mediated by specific membrane receptors. This review will focus on the extranuclear effects of thyroid hormones on plasma membrane transport systems in non mammalian cells: chick embryo hepatocytes at two different stages of development, 14 and 19 days. At variance with mammals, the chick embryo develops in a closed compartment, beyond the influence of maternal endocrine factors.
View Article and Find Full Text PDF