Publications by authors named "Sergio S Samoluk"

Opposing changes in the abundance of satellite DNA and long terminal repeat (LTR) retroelements are the main contributors to the variation in genome size and heterochromatin amount in Arachis diploids. The South American genus Arachis (Fabaceae) comprises 83 species organized in nine taxonomic sections. Among them, section Arachis is characterized by species with a wide genome and karyotype diversity.

View Article and Find Full Text PDF

is the most specious genus of the Squamata lizards in South America, presenting exceptional evolutionary radiation and speciation patterns. This recent diversification complicates the formal taxonomic treatment and the phylogenetic analyses of this group, causing relationships among species to remain controversial. Here we used Next-Generation Sequencing to do a comparative analysis of the structure and organization of the complete mitochondrial genomes of three differently related species of and with different reproductive strategies and ploidy levels.

View Article and Find Full Text PDF

Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination).

View Article and Find Full Text PDF

The most conspicuous difference among chromosomes and genomes in Arachis species, the patterns of heterochromatin, was mainly modeled by differential amplification of different members of one superfamily of satellite DNAs. Divergence in repetitive DNA is a primary driving force for genome and chromosome evolution. Section Arachis is karyotypically diverse and has six different genomes.

View Article and Find Full Text PDF

Satellite DNA (satDNA) is a major component of the heterochromatic regions of eukaryote genomes and usually shows a high evolutionary dynamic, even among closely related species. Section Arachis (genus Arachis) is composed of species belonging to six different genomes (A, B, D, F, G and K). The most distinguishing features among these genomes are the amount and distribution of the heterochromatin in the karyotypes.

View Article and Find Full Text PDF

Notolathyrus is a section of South American endemic species of the genus Lathyrus. The origin, phylogenetic relationship and delimitation of some species are still controversial. The present study provides an exhaustive analysis of the karyotypes of approximately half (10) of the species recognized for section Notolathyrus and four outgroups (sections Lathyrus and Orobus) by cytogenetic mapping of heterochromatic bands and 45S and 5S rDNA loci.

View Article and Find Full Text PDF

Peanut is an allotetraploid (2n = 2x = 40, AABB) of recent origin. Arachis duranensis and A. ipaënsis, the most probable diploid ancestors of the cultigen, and several other wild diploid species with different genomes (A, B, D, F and K) are used in peanut breeding programs.

View Article and Find Full Text PDF

Apomixis, a clonal plant reproduction by seeds, is controlled in Paspalum spp. by a single locus which is blocked in terms of recombination. Partial sequence analysis of the apomixis locus revealed structural features of heterochromatin, namely the presence of repetitive elements, gene degeneration, and de-regulation.

View Article and Find Full Text PDF