Background: Despite the recent advances in computational fluid dynamics (CFD) techniques applied to blood flow within the left atrium (LA), the relationship between atrial geometry, flow patterns, and blood stasis within the left atrial appendage (LAA) remains unclear. A better understanding of this relationship would have important clinical implications, as thrombi originating in the LAA are a common cause of stroke in patients with atrial fibrillation (AF).
Aim: To identify the most representative atrial flow patterns on a patient-specific basis and study their influence on LAA blood stasis by varying the flow split ratio and some common atrial modeling assumptions.
Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting over 1% of the population. It is usually triggered by irregular electrical impulses that cause the atria to contract irregularly and ineffectively. It increases blood stasis and the risk of thrombus formation within the left atrial appendage (LAA) and aggravates adverse atrial remodeling.
View Article and Find Full Text PDF