Publications by authors named "Sergio R S Veloso"

Nanoparticle-laden contact lenses are a formidable strategy for ocular drug delivery. However, incorporating nanoparticles to achieve sustained drug release without affecting the contact lenses' properties remains a challenging task. In this work, daily and monthly replacement silicone-hydrogel contact lenses laden with bovine serum albumin/hyaluronic acid (BSA/HA) nanoparticles are presented.

View Article and Find Full Text PDF

Self-assembled peptide-based hydrogels have attracted considerable interest from the research community. Particularly, low molecular weight gelators (LMWGs) consisting of amino acids and short peptides are highly suitable for biological applications owing to their facile synthesis and scalability, as well as their biocompatibility, biodegradability, and stability in physiological conditions. However, challenges in understanding the structure-property relationship and lack of design rules hinder the development of new gelators with the required properties for several applications.

View Article and Find Full Text PDF

Supramolecular hydrogels, particularly low-molecular-weight peptide hydrogels, are promising drug delivery systems due to their ability to change the solubility, targeting, metabolism and toxicity of drugs. Magneto-plasmonic liposomes, in addition to being remotely controllable with the application of an external magnetic field, also increase the efficiency of encapsulated drug release through thermal stimulation, for example, with magnetic and optical hyperthermia. Thus, the combination of those two materials-giving magneto-plasmonic lipogels-brings together several functionalities, among which are hyperthermia and spatiotemporally controlled drug delivery.

View Article and Find Full Text PDF

In this study, multicore-like iron oxide (FeO) and manganese ferrite (MnFeO) nanoparticles were synthesized and combined with nanogels based on chitosan and alginate to obtain a multimodal drug delivery system. The nanoparticles exhibited crystalline structures and displayed sizes of 20 ± 3 nm (FeO) and 11 ± 2 nm (MnFeO). The FeO nanoparticles showed a higher saturation magnetization and heating efficiency compared with the MnFeO nanoparticles.

View Article and Find Full Text PDF

The aim of this article is to review the research conducted in the field of aqueous and polymer composites cellulose nanocrystal (CNC) gels. The experimental techniques employed to characterize the rheological behavior of these materials will be summarized, and the main advantages of using CNC gels will also be addressed in this review. In addition, research devoted to the use of numerical simulation methodologies to describe the production of CNC-based materials, e.

View Article and Find Full Text PDF

In recent years, nanomedicine has provided several high-performance tools for overcoming biomedical challenges, resulting in numerous patents [...

View Article and Find Full Text PDF

Self-assembled peptide-based gels provide several advantages for technological applications. Recently, the co-assembly of gelators has been a strategy to modulate and tune gel properties and even implement stimuli-responsiveness. However, it still comprises limitations regarding the required library of compounds and outcoming properties.

View Article and Find Full Text PDF

Calcium-doped manganese ferrite nanoparticles (NPs) are gaining special interest in the biomedical field due to their lower cytotoxicity compared with other ferrites, and the fact that they have improved magnetic properties. Magnetic hyperthermia (MH) is an alternative cancer treatment, in which magnetic nanoparticles promote local heating that can lead to the apoptosis of cancer cells. In this work, manganese/calcium ferrite NPs coated with citrate (CaMnFeO ( = 0, 0.

View Article and Find Full Text PDF

Superparamagnetic nanoparticles are of high interest for therapeutic applications. In this work, nanoparticles of calcium-doped manganese ferrites (CaMnFeO) functionalized with citrate were synthesized through thermally assisted oxidative precipitation in aqueous media. The method provided well dispersed aqueous suspensions of nanoparticles through a one-pot synthesis, in which the temperature and Ca/Mn ratio were found to influence the particles microstructure and morphology.

View Article and Find Full Text PDF

Supramolecular short peptide-based gels are promising materials for the controlled release of drugs ( chemotherapeutic drugs) owing to the biocompatibility and similarity to cell matrix. However, the drug encapsulation and control over its release, mainly the hydrophilic drugs, can be a cumbersome task. This can be overcome through encapsulation/compartmentalization of drugs in liposomes, which can also enable spatiotemporal control and enhanced drug release through a trigger, such as photothermia.

View Article and Find Full Text PDF

Short peptides capped on the N-terminus with aromatic groups are often able to form supramolecular hydrogels-self-assembled networks of fibrils able to trap water molecules. Typically, these hydrogelators can form stiff gels at concentrations of 0.1 to 1.

View Article and Find Full Text PDF

Self-assembled short peptide-based gels are highly promising drug delivery systems. However, implementing a stimulus often requires screening different structures to obtain gels with suitable properties, and drugs might not be well encapsulated and/or cause undesirable effects on the gel's properties. To overcome this challenge, a new design approach is presented to modulate the release of doxorubicin as a model chemotherapeutic drug through the interplay of (di)phenylalanine-coated magnetic nanoparticles, PEGylated liposomes and doxorubicin co-assembly in dehydropeptide-based gels.

View Article and Find Full Text PDF

The self-assembly of nanometric structures from molecular building blocks is an effective way to make new functional materials for biological and technological applications. In this work, four symmetrical bolaamphiphiles based on dehydrodipeptides (phenylalanyldehydrophenylalanine and tyrosyldehydrophenylalanine) linked through phenyl or naphthyl linkers (terephthalic acid and 2,6-naphthalenedicarboxylic acid) were prepared, and their self-assembly properties were studied. The results showed that all compounds, with the exception of the bolaamphiphile of tyrosyldehydrophenylalanine and 2,6-naphthalene dicarboxylic acid, gave self-standing hydrogels with critical gelation concentrations of 0.

View Article and Find Full Text PDF

Introduction: Magnetoliposomes have gained increasing attention as delivery systems, as they surpass many limitations associated with liposomes. The combination with magnetic nanoparticles provides a means for development of multimodal and multifunctional theranostic agents that enable on-demand drug release and real-time monitoring of therapy.

Areas Covered: Recently, several magnetoliposome structures have been reported to ensure efficient transport and delivery of therapeutics, while improving magnetic properties.

View Article and Find Full Text PDF

Self-assembled peptide-based hydrogels are promising materials for biomedical research owing to biocompatibility and similarity to the extracellular matrix, amenable synthesis and functionalization and structural tailoring of the rheological properties. Wider developments of self-assembled peptide-based hydrogels in biomedical research and clinical translation are hampered by limited commercial availability allied to prohibitive costs. In this work a focused library of Cbz-protected dehydrodipeptides Cbz-L-Xaa-Z-ΔPhe-OH (Xaa= Met, Phe, Tyr, Ala, Gly) was synthesised and evaluated as minimalist hydrogels.

View Article and Find Full Text PDF

Magnetic gels have been gaining great attention in nanomedicine, as they combine features of hydrogels and magnetic nanoparticles into a single system. The incorporation of liposomes in magnetic gels further leads to a more robust multifunctional system enabling more functions and spatiotemporal control required for biomedical applications, which includes on-demand drug release. In this review, magnetic gels components are initially introduced, as well as an overview of advancements on the development, tuneability, manipulation and application of these materials.

View Article and Find Full Text PDF

Currently, the nanoparticle functionalization effect on supramolecular peptide-based hydrogels remains undescribed, but is expected to affect the hydrogels' self-assembly and final magnetic gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 ± 2.

View Article and Find Full Text PDF

A major problem with magnetogels is the encapsulation of hydrophobic drugs. Magnetoliposomes not only provide these domains but also improve drug stability and avert the aggregation of the magnetic nanoparticles. In this work, two magnetoliposome architectures, solid and aqueous, were combined with supramolecular peptide-based hydrogels, which are of biomedical interest owing to their biocompatibility, easy tunability, and wide array of applications.

View Article and Find Full Text PDF

Research on iron oxide-based magnetic nanoparticles and their clinical use has been, so far, mainly focused on the spherical shape. However, efforts have been made to develop synthetic routes that produce different anisotropic shapes not only in magnetite nanoparticles, but also in other ferrites, as their magnetic behavior and biological activity can be improved by controlling the shape. Ferrite nanoparticles show several properties that arise from finite-size and surface effects, like high magnetization and superparamagnetism, which make them interesting for use in nanomedicine.

View Article and Find Full Text PDF

Supramolecular hydrogels are highly promising candidates as biomedical materials owing to their wide array of properties, which can be tailored and modulated. Additionally, their combination with plasmonic/magnetic nanoparticles to form plasmonic magnetogels further improves their potential in biomedical applications through the combination of complementary strategies, such as photothermia, magnetic hyperthermia, photodynamic therapy and magnetic-guided drug delivery. Here, a new dehydropeptide hydrogelator, Npx-l-Met-Z-ΔPhe-OH, was developed and combined with two different plasmonic/magnetic nanoparticle architectures, i.

View Article and Find Full Text PDF

Herein, novel dehydropeptide-based magnetogels, based on the hydrogelators Npx-l-Phe-Z-ΔAbu-OH, Npx-l-Trp-Z-ΔPhe-OH and Npx-l-Ala-Z-ΔPhe-Gly-l-Arg-Gly-l-Asp-Gly-OH and containing manganese ferrite nanoparticles (diameters around 20 nm), were prepared and characterized. TEM and FTIR measurements showed that the magnetogels maintained the fibrous structure of neat hydrogels, with fibres of ca. 20 nm average width (generally in the range 10-30 nm) and a few conformational changes relative to the neat hydrogels.

View Article and Find Full Text PDF

Drug delivery nanosystems have been thriving in recent years as a promising application in therapeutics, seeking to solve the lack of specificity of conventional chemotherapy targeting and add further features such as enhanced magnetic resonance imaging, biosensing and hyperthermia. The combination of magnetic nanoparticles and hydrogels introduces a new generation of nanosystems, the magnetogels, which combine the advantages of both nanomaterials, apart from showing interesting properties unobtainable when both systems are separated. The presence of magnetic nanoparticles allows the control and targeting of the nanosystem to a specific location by an externally applied magnetic field gradient.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2hirvjucgu3qa0b3ec9ghfohss9arv4u): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once