Nitrogen-vacancy (NV) and other color centers in diamond have attracted much attention as non-photobleaching quantum emitters and quantum sensors. Since microfabrication in bulk diamonds is technically difficult, embedding nanodiamonds with color centers into designed structures is a way to integrate these quantum emitters into photonic devices. In this study, we demonstrate a method to incorporate fluorescent nanodiamonds into engineered microstructures using two-photon polymerization (2PP).
View Article and Find Full Text PDFConsidering the paradigmatic driven Brownian motion, we perform extensive numerical analysis on the performance of optimal linear-response processes far from equilibrium. We focus on the overdamped regime where exact optimal processes are known analytically and most experiments operate. This allows us to compare the optimal processes obtained in linear response and address their relevance to experiments using realistic parameter values from experiments with optical tweezers.
View Article and Find Full Text PDFAlthough diamond photonics has driven considerable interest and useful applications, as shown in frequency generation devices and single photon emitters, fundamental studies on the third-order optical nonlinearities of diamond are still scarce, stalling the development of an integrated platform for nonlinear and quantum optics. The purpose of this paper is to contribute to those studies by measuring the spectra of two-photon absorption coefficient (β) and the nonlinear index of refraction (n) of diamond using femtosecond laser pulses, in a wide spectral range. These measurements show the magnitude of β increasing from 0.
View Article and Find Full Text PDFPartial-transfer absorption imaging is a tool that enables optimal imaging of atomic clouds for a wide range of optical depths. In contrast to standard absorption imaging, the technique can be minimally destructive and can be used to obtain multiple successive images of the same sample. The technique involves transferring a small fraction of the sample from an initial internal atomic state to an auxiliary state and subsequently imaging that fraction absorptively on a cycling transition.
View Article and Find Full Text PDF