Publications by authors named "Sergio P Campana Filho"

Chitosan has attracted significant attention due to its versatile properties, which make it an ideal candidate for varied biomedical and industrial applications [...

View Article and Find Full Text PDF
Article Synopsis
  • Periodontitis is a chronic inflammatory disease caused by bacteria that currently has limited treatment options, mainly slowing its progression.
  • Researchers introduced a new solution using 3D printed bilayer membranes designed for dual-drug delivery and support tissue regeneration, utilizing nanocomposite hydrogels with antimicrobial properties.
  • These membranes showed strong mechanical properties, sustained drug release, and the ability to promote bone regeneration and reduce inflammation, offering a promising advance in periodontitis treatment.
View Article and Find Full Text PDF
Article Synopsis
  • The study examines the activity of a recombinant chitinase enzyme from leaf-cutting ants, which was effective against both colloidal and solid chitin substrates.
  • The analysis revealed that the enzyme produced N-acetylglucosamine as a product and reduced the viscosity of chitin solutions, indicating partial hydrolysis but not complete degradation of chitin.
  • The enzyme exhibited greater effectiveness on α-chitin compared to β-chitin and significantly inhibited the growth of a harmful fungus, suggesting potential applications in producing chitin derivatives and as an antifungal agent.
View Article and Find Full Text PDF

Nanomaterial-based wound dressings have been extensively studied for the treatment of both minor and life-threatening tissue injuries. These wound dressings must possess several crucial characteristics, such as tissue compatibility, non-toxicity, appropriate biodegradability to facilitate wound healing, effective antibacterial activity to prevent infection, and adequate physical and mechanical strength to withstand repetitive dynamic forces that could potentially disrupt the healing process. Nevertheless, the development of nanostructured wound dressings that incorporate various functional micro- and nanomaterials in distinct architectures, each serving specific purposes, presents significant challenges.

View Article and Find Full Text PDF

Multidrug-resistant bacteria represent a global health and economic burden that urgently calls for new technologies to combat bacterial antimicrobial resistance. Here, we developed novel nanocomposites (NCPs) based on chitosan that display different degrees of acetylation (DAs), and conjugated polymer cyano-substituted poly(-phenylene vinylene) (CNPPV) as an alternative approach to inactivate Gram-negative () and Gram-positive () bacteria. Chitosan's structure was confirmed through FT-Raman spectroscopy.

View Article and Find Full Text PDF

Langmuir monolayers are used to simulate the biological membrane environment, acting as a mimetic system of the outer or the inner membrane leaflet. Herein, we analyze the interaction of membrane models with a partially N-acetylated chitosan (Ch35%) possessing a quasi-ideal random pattern of acetylation, full water solubility up to pH ≈ 8.5 and unusually high weight average molecular weight.

View Article and Find Full Text PDF

We systematically investigated the effect of β-chitin (BCH) particle size on the preparation of nanocrystals/nanowhiskers (CWH) by acid hydrolysis. Regardless this variable, CWH aqueous suspension exhibited outstanding stability and the average degree of acetylation remained nearly constant after the acid treatment. In contrast, the morphology, dimensions, crystallinity, and molecular weight of CHW were significantly affect by the particle size.

View Article and Find Full Text PDF

Vulvovaginal candidiasis (VVC) represents a considerable health burden for women. Despite the availability of a significant array of antifungal drugs and topical products, the management of the infection is not always effective, and new approaches are needed. Here, we explored cationic N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles (NPs) as carriers of clotrimazole (CLT) for the topical treatment of VVC.

View Article and Find Full Text PDF

Two samples of N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan (DPCat) with different average degrees of quaternization named as DPCat35 (DQ¯ = 35%) and DPCat80 (DQ¯ = 80%), were successfully synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) with O-palmitoyl chitosan (DPCh) derivative (DS¯ = 12%). Such amphiphilic derivatives of chitosan were fully water-soluble at 1.0 < pH < 12.

View Article and Find Full Text PDF

Chitosans with different average degrees of acetylation and weight molecular weight were analyzed by time-domain NMR relaxometry using the recently proposed pulse sequence named Rhim and Kessemeier - Radiofrequency Optimized Solid-Echo (RK-ROSE) to acquire H NMR signal of solid-state materials. The NMR signal decay was composed of faster (tenths of μs) and longer components, where the mobile-part fraction exhibited an effective relaxation transverse time assigned to methyl hydrogens from N-acetyl-d-glucosamine (GlcNAc) units. The higher intrinsic mobility of methyl groups was confirmed via DIPSHIFT experiments by probing the H-C dipolar interaction.

View Article and Find Full Text PDF

Wound repair is a complex process that calls for strategies to allow a rapid and effective regeneration of injured skin, which has stimulated the research of advanced wound dressings. Herein, highly porous membranes of N,O-carboxymethylchitosan (CMCh), and poly (vinyl alcohol) (PVA) were successfully prepared via a green and facile freeze-drying method of blend solutions containing CMCh/PVA at weight ratio 25/75. Membranes composed only by CMCh were also prepared and genipin was used for crosslinking.

View Article and Find Full Text PDF

We propose a novel approach relied on high-resolution solid-state C NMR spectroscopy to quantify the crystallinity index of chitosans (Ch) prepared with variable average degrees of acetylation (DA¯) from 5% to 60 % and average weight molecular weight (M¯) ranged in 0.15 × 10 g mol-1.2 × 10 g mol.

View Article and Find Full Text PDF

Langmuir monolayers have been used as cell membrane models, where lipid composition is normally varied to mimic distinct types of membranes. For eukaryotic membranes, for instance, rather than using only zwitterionic phospholipids there is now a trend to employ mixtures to simulate the lipid rafts known to be relevant for various cellular processes. In this study, we demonstrate that effects from chitosans on Langmuir monolayers are considerably higher if lipid raft compositions (ternary mixtures of dipalmitoyl phosphatidyl choline (DPPC), sphingomyelin (SM) and cholesterol) are used.

View Article and Find Full Text PDF

Since chitosan presents the ability to interact with a wide range of molecules, it has been one of the most popular natural polymers for the construction of layer-by-layer thin films. In this study, depth-profiling X-ray photoelectron spectroscopy (XPS) was employed to track the diffusion of sulfonated polystyrene (SPS) in carboxymethyl cellulose/chitosan (CMC/Chi) multilayers. Our findings suggest that the CMC/Chi film does not constitute an electrostatic barrier sufficient to block diffusion of SPS, and that diffusion can be controlled by adjusting the diffusion time and the molecular weight of the polymers that compose the CMC/Chi system.

View Article and Find Full Text PDF

This study applied the use of marine-derived fungus Penicillium citrinum CBMAI 1186 in the stereoselective reduction of the C=C double bond of the prochiral (E)-2-methyl-3-phenylacrylaldehyde 1. The fungus immobilized on chitosan, obtained by multistep ultrasound-assisted deacetylation process (Ch-USAD), produced the (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 (c = 49%, 40% ee) isomer and (±)-2-methyl-3-phenylacrilic acid 4 (c = 35%); in contrast, immobilized mycelia on commercial chitosan (Ch-C) yielded the (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 (c = 48%, 10% ee) and (±)-2-methyl-3-phenylpropanal 1a (c = 41%). The reaction using free mycelia gave a 40% yield of (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 with 10% ee.

View Article and Find Full Text PDF

Core-sheath nanofibers were successfully prepared via coaxial electrospinning by using chitosan with well-defined structural characteristics as the shell layer and poly (vinyl alcohol) (PVA) containing tetracycline hydrochloride (TH) as the core layer. The effects of the average degree of deacetylation (DD‾) of chitosan and the post-electrospinning genipin crosslinking on physicochemical and biological properties of resulting nonwovens were evaluated. Defect-free and geometrically uniform nanofibers with diameters predominantly in the range of 100-300 nm were prepared, and transmission electron microscopy (TEM) revealed the core-sheath structures and its preservation after crosslinking.

View Article and Find Full Text PDF

N-acetyl-D-glucosamine (GlcNAc) is an important amino-monosaccharide with great potential for biotechnological applications. It has traditionally been produced by the chemical hydrolysis of chitin, despite certain industrial and environmental drawbacks, including acidic wastes, low yields and high costs. Therefore, enzymatic production has gained attention as a promising environmentally-friendly alternative to the chemical processes.

View Article and Find Full Text PDF

In this paper, chitosan was used as protective agent for dual temperature-/pH-sensitive poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate)- based hydrogel nanoparticles (poly(NVCL-co-IA-co-EGDMA)) aiming avoid their undesirable colloidal destabilization at different conditions of body human tissues. Thus, poly(NVCL-co-IA-co-EGDMA) was embedded into chitosan and a new solid dispersion was prepared via spray-drying and ketoprofen was used as carrier. Two different sizes of hydrogel nanoparticles (120.

View Article and Find Full Text PDF

Methoxypoly(ethyleneglycol)-graft-chitosan (PEG-g-Ch) was prepared by grafting polyethyleneglycol into chitosans (Ch) exhibiting different average degree of deacetylation (60% < DD¯ < 95%). H NMR showed that PEG-g-Ch derivatives presented high average degree of N-substitution (DS¯ ≈ 40%) and such derivatives exhibited full water solubility at 1.0 < pH < 11.

View Article and Find Full Text PDF

An amphiphilic derivative of chitosan containing quaternary ammonium and myristoyl groups, herein named as ammonium myristoyl chitosan (DMCat), was synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) and myristoyl chitosan (DMCh). The success of the modification was confirmed using Fourier-transform infrared spectroscopy (FTIR) and ¹H nuclear magnetic resonance (NMR) spectroscopy. The average degrees of alkylation and quaternization ( D Q ¯ ) were determined by using ¹H NMR and conductometric titration.

View Article and Find Full Text PDF

Blend solutions of poly(ε-caprolactone) (PCL) and N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (QCh) were successfully electrospun. The weight ratio PCL/QCh ranged in the interval 95/5-70/30 while two QCh samples were used, namely QCh1 (DQ¯ = 47.3%; DPv¯ = 2218) and QCh2 (DQ¯ = 71.

View Article and Find Full Text PDF

Chitosan-based thin films were assembled using the layer-by-layer technique, and the axial composition was accessed using X-ray photoelectron spectroscopy with depth profiling. Chitosan (CHI) samples possessing different degrees of acetylation ([Formula: see text]) and molecular weight ([Formula: see text]) produced via the ultrasound-assisted deacetylation reaction were used in this study along with two different polyanions, namely, sodium polystyrenesulfonate (PSS) and carboxymethylcellulose (CMC). When chitosan, a positively charged polymer in aqueous acid medium, was combined with a strong polyanion (PSS), the total positive charge of chitosan, directly related to its [Formula: see text], was the key factor affecting the film formation.

View Article and Find Full Text PDF

This work addresses the establishment and characterization of gellan gum:pectin (GG:P) biodegradable mucoadhesive beads intended for the colon-targeted delivery of resveratrol (RES). The impact of the polymer carrier system on the cytotoxicity and permeability of RES was evaluated. Beads of circular shape (circularity index of 0.

View Article and Find Full Text PDF

The aim of this work was to investigate the potential of a new 3,6-O,O'-dimyristoyl derivative amphiphilic chitosan (DMCh), in improving the solubility of camptothecin (CPT), a hydrophobic anticancer drug, and its potential oral delivery. FTIR, H NMR and solid-state C NMR spectroscopy were used to characterize DMCh and to determine its average degree of substitution (DS¯=6.8%).

View Article and Find Full Text PDF

The demand for low cost and effective materials to remove contaminants such as residues of oil spills has encouraged studies on new biosorbents produced from wastes. Considering the overgeneration of fishing residues and the necessity to provide an alternative purpose for such materials, this study aimed to evaluate squid gladius and its derivatives (β-chitin and chitosan) as sorbents to remove marine diesel oil (MDO) from fresh and artificial seawater. It was also executed an attempted to improve their performances through a high-intensity ultrasound treatment (UT-gladius and UT-β-chitin).

View Article and Find Full Text PDF