Publications by authors named "Sergio Orlandini"

Molecular docking is a widely used technique in drug discovery to predict the binding mode of a given ligand to its target. However, the identification of the near-native binding pose in docking experiments still represents a challenging task as the scoring functions currently employed by docking programs are parametrized to predict the binding affinity, and, therefore, they often fail to correctly identify the ligand native binding conformation. Selecting the correct binding mode is crucial to obtaining meaningful results and to conveniently optimizing new hit compounds.

View Article and Find Full Text PDF

We review the status of the Quantum ESPRESSO software suite for electronic-structure calculations based on plane waves, pseudopotentials, and density-functional theory. We highlight the recent developments in the porting to GPUs of the main codes, using an approach based on OpenACC and CUDA Fortran offloading. We describe, in particular, the results achieved on linear-response codes, which are one of the distinctive features of the Quantum ESPRESSO suite.

View Article and Find Full Text PDF

A regularized version of the lattice Boltzmann method for efficient simulation of soft materials is introduced. Unlike standard approaches, this method reconstructs the distribution functions from available hydrodynamic variables (density, momentum, and pressure tensor) without storing the full set of discrete populations. This scheme shows significantly lower memory requirements and data access costs.

View Article and Find Full Text PDF

We present a method to study hydrodynamic phenomena from atomistic simulations. In statistical mechanics, these fields are computed as the ensemble average over the time dependent probability density function corresponding to the time evolution of an initial conditional probability density function consistent with some initial conditions. These initial conditions typically consist in constraints on some macroscopic fields, e.

View Article and Find Full Text PDF