Pharmaceutics
January 2024
Developing successful nanomedicine hinges on regulating nanoparticle surface interactions within biological systems, particularly in intravenous nanotherapeutics. We harnessed the surface interactions of gold nanoparticles (AuNPs) with serum proteins, incorporating a γ-globulin (γG) hard surface corona and chemically conjugating Doxorubicin to create an innovative hybrid anticancer nanobioconjugate, Dox-γG-AuNPs. γG (with an isoelectric point of ~7.
View Article and Find Full Text PDFTroponin is the American College of Cardiology and American Heart Association preferred biomarker for diagnosing acute myocardial infarction (MI). We provide a modeling framework for high sensitivity cardiac Troponin I (hs-cTnI) detection in chromatographic immunoassays (flow displacement mode) with an analytical limit of detection, i.e.
View Article and Find Full Text PDFThe fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we employ theoretical models to show how liquid polymeric droplets pass a fluidic barrier before crosslinking.
View Article and Find Full Text PDFIn this work, carbon dots were created from activated and non-activated pyrolytic carbon black obtained from waste tires, which were then chemically oxidized with HNO. The effects caused to the carbon dot properties were analyzed in detail through characterization techniques such as ion chromatography; UV-visible, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy; ζ potential; transmission electron microscopy (TEM); and spectrofluorometry. The presence of functional groups on the surface of all carbon dots was revealed by UV-visible, FTIR, XPS, and Raman spectra.
View Article and Find Full Text PDFMulti-material and multilayered micro- and nanostructures are prominently featured in nature and engineering and are recognized by their remarkable properties. Unfortunately, the fabrication of micro- and nanostructured materials through conventional processes is challenging and costly. Herein, we introduce a high-throughput, continuous, and versatile strategy for the fabrication of polymer fibers with complex multilayered nanostructures.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic has crudely demonstrated the need for massive and rapid diagnostics. By the first week of July, more than 10,000,000 positive cases of COVID-19 have been reported worldwide, although this number could be greatly underestimated. In the case of an epidemic emergency, the first line of response should be based on commercially available and validated resources.
View Article and Find Full Text PDFCirculating tumour cells (CTCs) are active participants in the metastasis process and account for ∼90% of all cancer deaths. As CTCs are admixed with a very large amount of erythrocytes, leukocytes, and platelets in blood, CTCs are very rare, making their isolation, capture, and detection a major technological challenge. Microfluidic technologies have opened-up new opportunities for the screening of blood samples and the detection of CTCs or other important cancer biomarker-proteins.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2013
Interdigitated capacitive electrode structures have been used to monitor or actuate over organic and electrochemical media in efforts to characterize biochemical properties. This article describes a method to perform a pre-characterization of interdigitated electrode structures using two methods: a hybrid voltage divider (HVD) and a vector network analyzer (VNA). Both methodologies develop some tests under two different conditions: free air and bi-distilled water media.
View Article and Find Full Text PDF