Nanoparticles have become versatile assets in the medical field, providing notable benefits across diverse medical arenas including controlled drug delivery, imaging, and immunological assays. Among these, non-lamellar lipid nanoparticles, notably cubosomes and hexosomes, showcase remarkable biocompatibility and stability, rendering them as optimal choices for theranostic applications. Particularly, incorporating edge activators like sodium taurocholate enhances the potential of these nanoparticles for dermal and transdermal drug delivery, overcoming the stratum corneum, a first line of defense in our skin.
View Article and Find Full Text PDFThe clinical translation of photosensitizers based on ruthenium(II) polypyridyl complexes (RPCs) in photodynamic therapy of cancer faces several challenges. To address these limitations, we conducted an investigation to assess the potential of a cubosome formulation stabilized in water against coalescence utilizing a polyphosphoester analog of Pluronic F127 as a stabilizer and loaded with newly synthesized RPC-based photosensitizer [Ru(dppn)(bpy-morph)](PF) (bpy-morph = 2,2'-bipyridine-4,4'-diylbis(morpholinomethanone)), PS-Ru. The photophysical characterization of PS-Ru revealed its robust capacity to induce the formation of singlet oxygen (O).
View Article and Find Full Text PDFThe reactivity of 1,1'-bis(3-methyl-4-imidazolin-2-selone)methane () and 1,2-bis(3-methyl-4-imidazolin-2-selone)ethane () toward I has been explored in MeCN under different experimental conditions and compared with that in CHCl. The compounds [](I) (), [I](I) (), [(μ-Se)](I)·1/2HO (), [I](I)·2I (), and [](I)·MeCN () were obtained and characterized. X-ray diffraction analyses point out an ionic nature for these compounds, which is presumably favored by the polarity of the solvent used.
View Article and Find Full Text PDFCervical cancer is one of the most common cancers affecting women worldwide. There are an estimated 570.000 new cases of cervical cancer each year and conventional treatments can cause severe side effects.
View Article and Find Full Text PDFMetal ions have unique electrochemical and spectroscopical properties that cannot be attained by purely organic compounds. Most of the metal ions are toxic to humans, but paradoxically, metallodrugs are used in medicine as therapeutics and theranostics. Metallodrugs are eliminated in urine and faeces, and therefore release toxic metals and ligands into aquatic ecosystems, thereby raising concerns regarding environmental risks.
View Article and Find Full Text PDFIn recent years, lipid bicontinuous cubic liquid-crystalline nanoparticles known as cubosomes have been under investigation because of their favorable properties as drug nanocarriers useful for anticancer treatments. Herein, we present organic/inorganic hybrid, theranostic cubosomes stabilized in water with a shell of alternate layers of chitosan, single strand DNA (model genetic material for potential gene therapy), and folic acid-chitosan conjugate (the outmost layer), coencapsulating up-converting Er and Yb codoped NaYF nanoparticles and daunorubicin. The latter acts as a chemotherapeutic drug of photosensitizing activity, while up-converting nanoparticles serve as energy harvester and diagnostic agent.
View Article and Find Full Text PDFBiomolecule-targeted imaging represents one of the most difficult challenges in medicine. Nanoerythrosomes (NERs) are nanovesicles obtained after lysis of red blood cells, and they are promising tools for drug delivery and imaging. In this work, a formulation based on NERs functionalized with 7-amino-3-methylcoumarin via cross-linking was tested on rat INS-1E and mouse MIN6 β-cells and endothelial MSI cell lines.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
May 2022
The application of a formulation on the skin represents an effective way to deliver bio-active molecules for therapeutical purposes. Moreover, the outermost skin layer, the stratum corneum, can be overcome by employing chemical permeation enhancers and edge activators as components. Several lipids can be considered as permeation enhancers, such as the ubiquitous monoolein, one of the most used building blocks for the preparation of lipid liquid crystalline nanoparticles which are applied as drug carriers for nanomedicine applications.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2022
Hypothesis: Soluplus® is one of the most widely used amphiphilic copolymers in drug delivery and has been reported to strongly enhance the adsorption of model drugs. However, there is still a limited understanding of its micellar behavior as it responds to the different routes of administration, which involve important changes in concentration.
Experiments: The microstructure of Soluplus aqueous solutions has been investigated at a wide range of polymer concentrations (2 × 10 - 0.
Cutaneous melanoma is one of the most aggressive and metastatic forms of skin cancer. However, current therapeutic options present several limitations, and the annual death rate due to melanoma increases every year. Dermal delivery of nanomedicines can effectively eradicate primary melanoma lesions, avoid the metastatic process, and improve survival.
View Article and Find Full Text PDFThe high volatility, water-immiscibility, and light/oxygen-sensitivity of most aroma compounds represent a challenge to their incorporation in liquid consumer products. Current encapsulation methods entail the use of petroleum-based materials, initiators, and crosslinkers as well as mixing, heating, and purification steps. Hence, more efficient and eco-friendly approaches to encapsulation must be sought.
View Article and Find Full Text PDFA family of combined Kojic acid and polyamine derivatives has been synthesized as phosphate anion and metal ion ligands. The stoichiometry, stability and structure of the ion/ligand adducts were determined by H NMR spectroscopy, potentiometry, EXAFS and DFT calculations. The presented dual ligands bind effectively both phosphate anions and metal ions and could be used as effective ion receptors in challenging water conditions in the broad pH range.
View Article and Find Full Text PDFThe colloidal stability of lipid based cubosomes, aqueous dispersion of inverse bicontinuous cubic phase, can be significantly increased by a stabilizer. The most commonly used stabilizers are non-ionic tri-block copolymers, poloxamers, which adsorb at the lipid-water interface and hence sterically stabilize the dispersion. One of the challenges with these synthetic polymers is the effect on the internal structure of the cubosomes and the potential toxicity when these nanoparticles are applied as nanomedicine platforms.
View Article and Find Full Text PDFSelf-assembling processes of amphiphilic lipids in water give rise to complex architectures known as lyotropic liquid crystalline (LLC) phases. Particularly, bicontinuous cubic and hexagonal LLC phases can be dispersed in water forming colloidal nanoparticles respectively known as cubosomes and hexosomes. These non-lamellar LLC dispersions are of particular interest for pharmaceutical and biomedical applications as they are potentially non-toxic, chemically stable, and biocompatible, also allowing encapsulation of large amounts of drugs.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2021
The delivery of bio-active molecules through the skin is challenging given the complex structure of its outer layer, the stratum corneum. Here we explore the possibility to encapsulate natural compounds into nanocarriers containing permeation enhancers that can affect the fluidity of the stratum corneum lipids. This approach is expected to facilitate dermal or transdermal release.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2021
Nanoerythrosomes (NERs), vesicle-like nanoparticles derived from red blood cells, represent a new and interesting vector for therapeutic molecules and imaging probes, mainly thanks to their high stability and excellent biocompatibility. Aiming to present a proof-of-concept of the use of NERs as diagnostic tools for in vitro/in vivo imaging purposes, we report here several functionalization routes to decorate the surfaces of NERs derived from bovine blood with two different fluorophores: 7-amino-4-methylcumarin and dibenzocyclooctinecyanine5.5.
View Article and Find Full Text PDFLyotropic liquid crystalline nanoparticles with bicontinuous cubic internal nanostructure, known as cubosomes, have been proposed as nanocarriers in various medical applications. However, as these nanoparticles show a certain degree of cytotoxicity, particularly against erythrocytes, their application in systemic administrations is limited to date. Intending to produce a more biocompatible formulation, we prepared cubosomes for the first time stabilized with a biodegradable polyphosphoester-analog of the commonly used Pluronic F127.
View Article and Find Full Text PDFA novel family of amide-based receptors is herein described. Specifically, the role of the halogen substituents at the aryl moieties in the anion binding properties of a series of halogenated isophthalamides and dipicolineamides (L1-L6) was investigated both in solution and in the solid state in order to evaluate the incidence of all possible different and combined weak host-guest interactions. Only L5 and L6 bearing pentafluorophenyl rings as substituents have some affinities for the set of anions studied.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2020
The encapsulation of poorly water-soluble compounds such as perfumes, flavors, and bioactive molecules is a key step in the formulation of a large variety of consumer products in the fields of household care and personal care. We study the encapsulation ability of an amphiphilic poly(ethylene glycol)--poly(vinyl acetate) (PEG--PVAc) graft copolymer, extending the focus to the entire phase diagram of polymer/perfume/water systems with three common natural fragrances. The three perfume molecules (2-phenyl ethanol, L-carvone, and α-pinene) possess different water affinities, as expressed by their octanol/water partition coefficients.
View Article and Find Full Text PDFWith the aim of engineering multifunctional nanoparticles useful for cancer therapy, a diketopyrrolopyrrole-porphyrin based photosensitizer was here conjugated to a block copolymer (Pluronic F108), and used to stabilize in water lipidic cubic liquid crystalline nanoparticles (cubosomes), also loaded with the antineoplastic agent docetaxel. The physicochemical characterization by SAXS, DLS, and cryo-TEM demonstrated that the formulation consisted of cubosomes, about 150 nm in size, possessing a bicontinuous cubic structure (space group Pn3m). The cellular imaging experiments proved that these nanoparticles localized in lysosomes and mitochondria, while cytotoxicity tests evidenced a slight but significant synergistic effect which, after irradiation, increased the toxicity induced by docetaxel alone, allowing further reduction of cell viability.
View Article and Find Full Text PDFHypothesis: The rational design of branched-tail surfactants is a suitable strategy to obtain low-viscosity surfactant-rich isotropic aqueous mixtures with negligible effects on biodegradability. This opens a way to the design of concentrated ("water-free") surfactant formulations, highly attractive for their ecological and economic benefits.
Experiments: The aggregation behaviour of N,N-dimethyl-2-propylheptan-1-amine oxide (CDAO-branched) in aqueous mixtures is investigated across the entire composition range by polarized optical microscopy, small angle X-ray and neutron scattering, electron paramagnetic resonance, and pulse-gradient stimulated echo nuclear magnetic resonance.
The use of adrenaline in cardiopulmonary resuscitation is a long-standing medical procedure, recommended by several international guidelines. However, its unspecific action on adrenergic receptors and the need for repeated administrations pose serious concerns about its safety, the balance between benefits and risks being still under debate. To address this issue, a sustained release nano-formulation of adrenaline was developed.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2018
Tyrosinase is one of the key enzymes in mammalian melanin biosynthesis. Decreasing tyrosinase activity has been targeted for the prevention of conditions related to the hyperpigmentation of the skin, such as melasma and age spots. This paper is devoted to the engineering of vesicle formulations loaded with 3-hydroxycoumarin for topical pharmaceutical applications.
View Article and Find Full Text PDFWe designed novel polymer-free cubic bicontinuous liquid crystalline dispersions (cubosomes) using monoolein as molecular building block, phospholipids as stabilizers, propylene glycol as hydrotrope. Their kinetic stability was evaluated by analysing the backscattering profiles upon ageing, and the most stable formulation was chosen as potential photosensitizers delivery vehicle for photodynamic therapy (PDT) of human skin melanoma cells. Morphological and topological features of such formulation alternatively loaded with Chlorin e6 or meso-Tetraphenylporphine-Mn(III) chloride photosensitizing dyes were investigated by cryo-TEM, DLS, and SAXS.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2018
Lipid based formulations, endowed of long term stability as a result of the formation of lamellar liquid crystals, were prepared using the natural lipids lecithin and glycerol trioleate in water, and characterized using optical microscopy, SAXRD and NMR. The formulations, designed as possible carriers for lysozyme and caffeine, were evaluated for structural features and stability after the loading of the guest molecules. Release experiments were performed at 37 °C using the PBS medium.
View Article and Find Full Text PDF