Publications by authors named "Sergio M Vechi"

Dengue virus (DENV) and West Nile virus (WNV) are mosquito-borne arboviruses responsible for causing acute systemic diseases and severe health conditions in humans. The discovery of therapies capable to prevent infections or treat infected individuals remains an important challenge, since no vaccine or specific efficient treatment could be developed so far. In this context, we present herein the synthesis, characterization, biological evaluation and docking studies of novel peptide-hybrids based on 2,4-thiazolidinedione scaffolds containing non-polar groups.

View Article and Find Full Text PDF

Dengue virus protease is a promising target for the development of antiviral drugs. We describe here a two-step rational optimization that led to the discovery of the potent inhibitor 35 with nanomolar binding affinity at dengue protease serotype 2 (IC50 = 0.6 μM, K i = 0.

View Article and Find Full Text PDF

We present molecular-dynamics (MD) computer simulation results for the local structures, hydrogen (H)-bond distribution, and dynamical properties of methanol (MeOH) and dimethylsulfoxide (DMSO) binary mixtures at ambient conditions over the entire composition range. The simulated heat of mixing and site-site pair distribution functions suggest that the intermolecular structures of the pure liquids are not markedly altered upon mixing. Nevertheless, H-bonding statistics show that aggregates of the type 1DMSO:1MeOH are formed and represent the predominant form of molecular association in these mixtures.

View Article and Find Full Text PDF

A molecular dynamics simulation study is presented for the dynamics of the polarizability anisotropy of liquid water using the SPC/E model and a dipolar induction scheme that involves the intrinsic polarizability and first hyperpolarizability tensors obtained from ab initio quantum chemical calculations at the MP2/6-311++G(d,p) level. The time-correlation functions for the collective polarizability anisotropy, the optical Kerr effect response, and the frequency spectra are analyzed in terms of the intrinsic and induced polarizability contributions. At short times, the simulated Kerr nuclear response exhibits maxima near 15, 50 and 180 fs, followed by a diffusive tail which has been fitted by a bi-exponential with time constants ca.

View Article and Find Full Text PDF