Publications by authors named "Sergio Lechago"

In this paper, we present the design, fabrication and characterization of a carrier depletion silicon-photonic switch based on a highly doped vertical pn junction. The vertical nature of the pn junction enables the device to exhibit a modulation efficiency as high as 0.23 V.

View Article and Find Full Text PDF

We experimentally demonstrate an all-silicon nanoantenna-based micro-optofluidic cytometer showing a combination of high signal-to-noise ratio (SNR) > 14 dB and ultra-compact size. Thanks to the ultra-high directivity of the antennas (>150), which enables a state-of-the-art sub-micron resolution, we are able to avoid the use of the bulky devices typically employed to collimate light on chip (such as lenses or fibers). The nm-scale antenna cross section allows a dramatic reduction of the optical system footprint, from the mm-scale of previous approaches to a few µm, yielding a notable reduction in the fabrication costs.

View Article and Find Full Text PDF

Photonic integrated circuits are developing as key enabling components for high-performance computing and advanced network-on-chip, as well as other emerging technologies such as lab-on-chip sensors, with relevant applications in areas from medicine and biotechnology to aerospace. These demanding applications will require novel features, such as dynamically reconfigurable light pathways, obtained by properly harnessing on-chip optical radiation. In this paper, we introduce a broadband, high directivity (>150), low loss and reconfigurable silicon photonics nanoantenna that fully enables on-chip radiation control.

View Article and Find Full Text PDF