Type 2 diabetes is characterised by failure to control glucose homeostasis, with numerous diabetic complications attributable to the resulting exposure of cells and tissues to chronic elevated concentrations of glucose and fatty acids. This, in part, results from formation of advanced glycation and advanced lipidation end-products that are able to modify protein, lipid, or DNA structure, and disrupt normal cellular function. Herein we used mass spectrometry to identify proteins modified by two such adduction events in serum of individuals with obesity, type 2 diabetes, and gestational diabetes, along with similar analyses of human and mouse skeletal muscle cells and mouse pancreatic islets exposed to glucolipotoxic stress.
View Article and Find Full Text PDFCell synchronization is crucial when studying events that take place at specific points of the cell cycle. Several chemical agents can be used to achieve the cell culture synchronization but not all type of cells respond equally to a given concentration of these drugs. Here we describe a simple optimization method to select concentrations and timings for nocodazole or thymidine treatments using fluorescence staining.
View Article and Find Full Text PDFGranulocyte macrophage colony stimulating factor (GM-CSF) is a pro-inflammatory cytokine produced by immune cells. Recent evidence suggests that GM-CSF plays an important role in multiple sclerosis (MS) pathogenesis. We investigated the expression and regulation of GM-CSF in different immune cells in MS.
View Article and Find Full Text PDFThe activity of key metabolic enzymes is regulated by the ubiquitin ligases that control the function of the cyclins; therefore the activity of these ubiquitin ligases explains the coordination of cell-cycle progression with the supply of substrates necessary for cell duplication. APC/C (anaphase-promoting complex/cyclosome)-Cdh1, the ubiquitin ligase that controls G(1)- to S-phase transition by targeting specific degradation motifs in cell-cycle proteins, also regulates the glycolysis-promoting enzyme PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3) and GLS1 (glutaminase 1), a critical enzyme in glutaminolysis. A decrease in the activity of APC/C-Cdh1 in mid-to-late G(1) releases both proteins, thus explaining the simultaneous increase in the utilization of glucose and glutamine during cell proliferation.
View Article and Find Full Text PDFDuring cell division, the activation of glycolysis is tightly regulated by the action of two ubiquitin ligases, anaphase-promoting complex/cyclosome-Cdh1 (APC/C-Cdh1) and SKP1/CUL-1/F-box protein-β-transducin repeat-containing protein (SCF-β-TrCP), which control the transient appearance and metabolic activity of the glycolysis-promoting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, isoform 3 (PFKFB3). We now demonstrate that the breakdown of PFKFB3 during S phase occurs specifically via a distinct residue (S(273)) within the conserved recognition site for SCF-β-TrCP. Glutaminase 1 (GLS1), the first enzyme in glutaminolysis, is also targeted for destruction by APC/C-Cdh1 and, like PFKFB3, accumulates after the activity of this ubiquitin ligase decreases in mid-to-late G1.
View Article and Find Full Text PDFDuring cell proliferation, the abundance of the glycolysis-promoting enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, isoform 3 (PFKFB3), is controlled by the ubiquitin ligase APC/C-Cdh1 via a KEN box. We now demonstrate in synchronized HeLa cells that PFKFB3, which appears in mid-to-late G1, is essential for cell division because its silencing prevents progression into S phase. In cells arrested by glucose deprivation, progression into S phase after replacement of glucose occurs only when PFKFB3 is present or is substituted by the downstream glycolytic enzyme 6-phosphofructo-1-kinase.
View Article and Find Full Text PDFCell proliferation is accompanied by an increase in the utilization of glucose and glutamine. The proliferative response is dependent on a decrease in the activity of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C)-Cdh1 which controls G1-to-S-phase transition by targeting degradation motifs, notably the KEN box. This occurs not only in cell cycle proteins but also in the glycolysis-promoting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3), as we have recently demonstrated in cells in culture.
View Article and Find Full Text PDFAMPK (AMP-activated protein kinase) is a key regulator of cellular energy because of its capacity to detect changes in the concentration of AMP. Recent evidence, however, indicates the existence of alternative mechanisms of activation of this protein. Mitochondrial ROS (reactive oxygen species), generated as a result of the interaction between nitric oxide and mitochondrial cytochrome c oxidase, activate AMPKalpha1 in HUVECs (human umbilical-vein endothelial cells) at a low oxygen concentration (i.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2006
Vascular endothelial cells are highly glycolytic and consume relatively low amounts of oxygen (O(2)) compared with other cells. We have confirmed that oxidative phosphorylation is not the main source of ATP generation in these cells. We also show that at a low O(2) concentration (<1%) endogenous NO plays a key role in preventing the accumulation of the alpha-subunit of hypoxia-inducible factor 1.
View Article and Find Full Text PDFPhotosynthetic microorganisms must acclimate to environmental conditions, such as low CO environments or high light intensities, which may lead to photo-oxidative stress. In an effort to understand how photosynthetic microorganisms acclimate to these conditions, Chlamydomonas reinhardtii was transformed using the Ble cassette, selected for Zeocin resistance and screened for colonies that showed poor growth at low CO levels. One of the insertional mutants obtained, named slc-230, was shown to have a Ble insert in the first exon of Hdh1, a novel, single copy gene.
View Article and Find Full Text PDFThis report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced.
View Article and Find Full Text PDFChlamydomonas reinhardtii Dangeard possesses a CO2 concentrating mechanism (CCM) that enables it to grow at very low CO2 concentrations. In previous studies, insertional mutagenesis was successfully used to identify genes required for growth at low CO2 in C. reinhardtii.
View Article and Find Full Text PDF