The redundancy present within the musculoskeletal system may offer a non-invasive source of signals for movement augmentation, where the set of muscle activations that do not produce force/torque (muscle-to-force null-space) could be controlled simultaneously to the natural limbs. Here, we investigated the viability of extracting movement augmentation control signals from the muscles of the wrist complex. Our study assessed (i) if controlled variation of the muscle activation patterns in the wrist joint's null-space is possible; and (ii) whether force and null-space cursor targets could be reached concurrently.
View Article and Find Full Text PDFMagnetic resonance imaging-guided focused ultrasound surgery (MRgFUS) is a non-invasive thermal ablation method that involves high-intensity focused ultrasound surgery (FUS) and Magnetic Resonance Imaging for anatomical imaging and real-time thermal mapping. This technique is widely employed for the treatment of patients affected by essential tremor (ET) and Parkinson's disease (PD). In the current study, functional near-infrared spectroscopy (fNIRS) was used to highlight hemodynamics changes in cerebral cortex activity, during a simple hand motor task, i.
View Article and Find Full Text PDFEstimation of the force exerted by muscles from their electromyographic (EMG) activity may be useful to control robotic devices. Approximating end-point forces as a linear combination of the activities of multiple muscles acting on a limb may lead to an inaccurate estimation because of the dependency between the EMG signals, i.e.
View Article and Find Full Text PDFMuscle activation patterns in the muscle-to-force null space, i.e. patterns that do not generate task-relevant forces, may provide an opportunity for motor augmentation by allowing to control additional end-effectors simultaneously to natural limbs.
View Article and Find Full Text PDFBackground: Periodic quality control (QC) procedures are important in order to guarantee the image quality of radiological equipment and are also conducted using phantoms simulating human body.
Objective: To perform (QC) measurements in intraoral imaging devices, a new and simple phantom was manufactured. Besides, to simplify QC procedures, computerized LabView-based software has been devised, enabling determination of image quantitative parameters in real time or during post processing.
(1) Background: Physical stimuli may activate peripheral blood mononuclear cells (PBMCs) to secrete cytokines, which may favor pro-inflammatory responses or trigger reparative phenomena. The purpose of this study is to evaluate the action of Polarized Polychromatic Incoherent Low Energy Radiation (PILER) on human in vitro PBMCs, by detection of the possible effects on cytokine production; (2) Methods: isolated PBMCs were irradiated with a PILER lamp at different exposure times, at a distance of 10 cm, before incubation. The supernatants were collected after 24 h and 48 h and cytokines evaluated by ELISA; (3) Results: Our results showed a decrease in the levels of pro-inflammatory IL-12p70, IL-17A, IFN-γ, and TNF-α cytokines, whereas IL-10 and TGF-β1 with regulatory activity increased; (4) Conclusions: PILER irradiation affected the cytokine production by isolated PBMCs driving the immune response toward an anti-inflammatory/reparative profile.
View Article and Find Full Text PDF