The exploration of the photophysical properties of push-pull molecules incorporating pyrimidine rings as electron-attracting moieties in their structure continues to be a fascinating area of investigation. A thorough examination of these properties not only contributes to fundamental knowledge but also provides crucial insights for the rational design of emissive materials in prospective applications. In this context, this work conducts an in-depth analysis of four families of 4,6-bis(arylvinyl)pyrimidines, evaluating the influence of substituents on both the aryl groups and position 2 of the pyrimidine ring.
View Article and Find Full Text PDFHere we present a new approach for the development of fluoride chemosensors taking advantage of aggregation induced emission (AIE) properties. Although AIE-based chemosensors have been described, they rely primarily on the analyte causing aggregation and hence fluorescence. We propose a new concept in the use of AIE for the development of fluorescent sensors.
View Article and Find Full Text PDF