Publications by authors named "Sergio F dos Reis"

Brain lateralization is a widespread phenomenon although its expression across primates is still controversial due to the reduced number of species analyzed and the disparity of methods used. To gain insight into the diversification of neuroanatomical asymmetries in non-human primates we analyze the endocasts, as a proxy of external brain morphology, of a large sample of New World monkeys and test the effect of brain size, home range and group sizes in the pattern and magnitude of shape asymmetry. Digital endocasts from 26 species were obtained from MicroCT scans and a set of 3D coordinates was digitized on endocast surfaces.

View Article and Find Full Text PDF

Miniaturized amphibians of the genus Brachycephalus are phenotypically diverse. The species of Brachycephalus have bufoniform or leptodactyliform Baupläne and any of three skeletal states: nonhyperossified, hyperossified without dorsal shield, and hyperossified with dorsal shield. We integrate high-resolution microcomputed tomography, geometric morphometrics, and an estimate of molecular phylogenetic relationships to investigate skull diversity in shape and size-shape space in selected species of Brachycephalus.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates cranial and endocranial shape variation in 14 modern species of platyrrhine primates and two extinct species, focusing on the Atelidae family, using advanced imaging and geometric morphometric techniques.
  • Results show that differences in brain shape correlate with the size of specific brain regions, revealing distinct anatomical positions among different species, particularly in regards to the neocortex and brainstem.
  • The findings highlight the unexpected similarities between the extinct Caipora and the modern Brachyteles, emphasizing the need to consider both current and extinct species to better understand evolutionary diversification in primates.
View Article and Find Full Text PDF

Understanding the origin of diversity is a fundamental problem in evolutionary biology. The null expectation for the evolutionary diversification is that all changes in biological diversity are the result of random processes. Adaptive radiations depart from this expectation as ecological factors and natural selection are supposed to play a central role in driving exceptional diversification.

View Article and Find Full Text PDF

Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions.

View Article and Find Full Text PDF

In addition to be the cell's powerhouse, mitochondria also contain a cell death machinery that includes highly regulated processes such as the membrane permeability transition pore (PTP) and reactive oxygen species (ROS) production. In this context, the results presented here provide evidence that liver mitochondria isolated from Gracilinanus microtarsus, a small and short life span (one year) marsupial, when compared to mice, are much more susceptible to PTP opening in association with a poor NADPH dependent antioxidant capacity. Liver mitochondria isolated from the marsupial are well coupled and take up Ca(2+) but exhibited a much lower Ca(2+) retention capacity than mouse mitochondria.

View Article and Find Full Text PDF

The network structure of biological systems provides information on the underlying processes shaping their organization and dynamics. Here we examined the structure of the network depicting protein interactions within the spliceosome, the macromolecular complex responsible for splicing in eukaryotic cells. We show the interactions of less connected spliceosome proteins are nested subsets of the connections of the highly connected proteins.

View Article and Find Full Text PDF

The end of the Pleistocene was marked by the extinction of almost all large land mammals worldwide except in Africa. Although the debate on Pleistocene extinctions has focused on the roles of climate change and humans, the impact of perturbations depends on properties of ecological communities, such as species composition and the organization of ecological interactions. Here, we combined palaeoecological and ecological data, food-web models and community stability analysis to investigate if differences between Pleistocene and modern mammalian assemblages help us understand why the megafauna died out in the Americas while persisting in Africa.

View Article and Find Full Text PDF

The cranial base, composed of the midline and lateral basicranium, is a structurally important region of the skull associated with several key traits, which has been extensively studied in anthropology and primatology. In particular, most studies have focused on the association between midline cranial base flexion and relative brain size, or encephalization. However, variation in lateral basicranial morphology has been studied less thoroughly.

View Article and Find Full Text PDF

The estimation of a robust phylogeny is a necessary first step in understanding the biological diversification of the platyrrhines. Although the most recent phylogenies are generally robust, they differ from one another in the relationship between Aotus and other genera as well as in the relationship between Pitheciidae and other families. Here, we used coding and non-coding sequences to infer the species tree and embedded gene trees of the platyrrhine genera using the Bayesian Markov chain Monte Carlo method for the multispecies coalescent (*BEAST) for the first time and to compared the results with those of a Bayesian concatenated phylogenetic analysis.

View Article and Find Full Text PDF

Didelphids (Didelphimorphia: Didelphidae) are a large and well-studied group of Neotropical marsupials. Although knowledge of the parasitic fauna of didelphids is still scarce, recent work has suggested that Neotropical marsupials are often hosts of pinworms. Here, we isolated oxyurid nematodes from fecal samples of Marmosa paraguayana (Marsupialia: Didelphidae) and provide a general description and measurements for male and female specimens.

View Article and Find Full Text PDF

Toadlets of the genus Brachycephalus are endemic to the Atlantic rainforests of southeastern and southern Brazil. The 14 species currently described have snout-vent lengths less than 18 mm and are thought to have evolved through miniaturization: an evolutionary process leading to an extremely small adult body size. Here, we present the first comprehensive phylogenetic analysis for Brachycephalus, using a multilocus approach based on two nuclear (Rag-1 and Tyr) and three mitochondrial (Cyt b, 12S, and 16S rRNA) gene regions.

View Article and Find Full Text PDF

Important aspects of population evolution have been investigated using nucleotide sequences. Under the neutral Wright-Fisher model, the scaled mutation rate represents twice the average number of new mutations per generations and it is one of the key parameters in population genetics. In this study, we present various methods of estimation of this parameter, analytical studies of their asymptotic behavior as well as comparisons of the distribution's behavior of these estimators through simulations.

View Article and Find Full Text PDF

Species of the genus Brachycephalus, have a snout-vent length of less than 18 mm and are believed to have evolved through miniaturization. Brachycephalus ephippium, is particularly interesting; because its entire skull is hyperossified, and the presacral vertebrae and transverse processes are covered by a dorsal shield. We demonstrate in this paper that, at the macroscopic level, a completely hyperossified skull and dorsal shield occur only in B.

View Article and Find Full Text PDF

Optimal foraging theory predicts that individuals should become more opportunistic when intraspecific competition is high and preferred resources are scarce. This density-dependent diet shift should result in increased diet breadth for individuals as they add previously unused prey to their repertoire. As a result, the niche breadth of the population as a whole should increase.

View Article and Find Full Text PDF

Emerging infectious diseases are among the main threats to conservation of biological diversity. A crucial task facing epidemiologists is to predict the vulnerability of populations of endangered animals to disease outbreaks. In this context, the network structure of social interactions within animal populations may affect disease spreading.

View Article and Find Full Text PDF

The structure of mutualistic networks provides clues to processes shaping biodiversity [1-10]. Among them, interaction intimacy, the degree of biological association between partners, leads to differences in specialization patterns [4, 11] and might affect network organization [12]. Here, we investigated potential consequences of interaction intimacy for the structure and coevolution of mutualistic networks.

View Article and Find Full Text PDF

The frequency distribution of the number of interactions per species (i.e., degree distribution) within plant-animal mutualistic assemblages often decays as a power-law with an exponential truncation.

View Article and Find Full Text PDF

In a given area, plant-animal mutualistic interactions form complex networks that often display nestedness, a particular type of asymmetry in interactions. Simple ecological and evolutionary factors have been hypothesized to lead to nested networks. Therefore, nestedness is expected to occur in other types of mutualisms as well.

View Article and Find Full Text PDF

Individual-level diet variation can be easily quantified by gut-content analysis. However, because gut contents are a 'snapshot' of individuals' feeding habits, such cross-sectional data can be subject to sampling error and lead one to overestimate levels of diet variation. In contrast, stable isotopes reflect an individual's long-term diet, so isotope variation among individuals can be interpreted as diet variation.

View Article and Find Full Text PDF

The pattern of larval interaction in blowflies confined with Chrysomya albiceps Wied. and C. rufifacies Maquart can be changed in response to the predatory behaviour of the two species to a contest-type process instead of the scramble competition that usually occurs in blowflies.

View Article and Find Full Text PDF

Mutualistic networks involving plants and their pollinators or frugivores have been shown recently to exhibit a particular asymmetrical organization of interactions among species called nestedness: a core of reciprocal generalists accompanied by specialist species that interact almost exclusively with generalists. This structure contrasts with compartmentalized assemblage structures that have been verified in antagonistic food webs. Here we evaluated whether nestedness is a property of another type of mutualism-the interactions between ants and extrafloral nectary-bearing plants--and whether species richness may lead to differences in degree of nestedness among biological communities.

View Article and Find Full Text PDF

The computationally challenging problem of reconstructing the phylogeny of a set of contemporary data, such as DNA sequences or morphological attributes, was treated by an extended version of the neighbor-joining (NJ) algorithm. The original NJ algorithm provides a single-tree topology, after a cascade of greedy pairing decisions that tries to simultaneously optimize the minimum evolution and the least squares criteria. Given that some sub-trees are more stable than others, and that the minimum evolution tree may not be achieved by the original NJ algorithm, we propose a multi-neighbor-joining (MNJ) algorithm capable of performing multiple pairing decisions at each level of the tree reconstruction, keeping various partial solutions along the recursive execution of the NJ algorithm.

View Article and Find Full Text PDF

The rodent mandible has become a paradigm for studies on the development and evolution of complex morphological structures. We use a combination of geometric and multivariate morphometric methods in order to assess the correspondence between integration patterns and a priori biological models in the context of evolutionary shape divergence in the mandible of rodents of the family Echimyidae. The correlation of shape distances among operational taxonomic units (individuals, species, genera) in separate morphogenetic components allowed the construction of integration matrices among mandible components for data sets corresponding to varying levels of genetic divergence (intergeneric, interspecific, and intrapopulational).

View Article and Find Full Text PDF

Barabasi-Albert networks are constructed by adding nodes via preferential attachment to an initial core of nodes. We study the topology of small scale-free networks as a function of the size and average connectivity of their initial random core. We show that these two parameters may strongly affect the tail of the degree distribution, by consistently leading to broad-scale or single-scale networks.

View Article and Find Full Text PDF