The growth of international trade, coupled with an expansion of large-scale pine plantations in South America during the second half of the twentieth century, has significantly increased the opportunities for the invasion of forest insects. Bark beetles (Coleoptera: Curculionidae, Scolytinae) are a large and diverse group of insects, commonly recognized as one of the most important tree mortality agents in coniferous forests worldwide and an important group among invasive forest species. In this study, we combined data from field sampling with published records of established non-native pine bark beetles, to describe their distribution and invasion history in pine plantations across southern South America, reviewing the available information on their phenology and host range.
View Article and Find Full Text PDFDifferent Andean societies underwent processes of expansion and collapse during propitious or adverse climate conditions, resource boost or depletion along with population variations. Previous studies have emphasized that demographic collapses of polities in the Central Andes Area were triggered by warfare and the negative impacts of fluctuating climate (droughts) on crop productivity. Nevertheless, the interactions between climatic variability, demography and warfare have been less thoroughly evaluated.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2024
Abrupt and rapid changes in human societies are among the most exciting population phenomena. Human populations tend to show rapid expansions from low to high population density along with increased social complexity in just a few generations. Such demographic transitions appear as a remarkable feature of population dynamics, most likely fuelled by the ability to accumulate cultural/technological innovations that actively modify their environment.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2024
The overall trajectory for the human-environment interaction has been punctuated by demographic boom-and-bust cycles, phases of growth/overshooting as well as of expansion/contraction in productivity. Although this pattern has been explained in terms of an interplay between population growth, social upscaling, ecosystem engineering and climate variability, the evoked demographic-resource-complexity mechanisms have not been empirically tested. By integrating proxy data for population sizes, palaeoclimate and internal societal factors into empirical modelling approaches from the population dynamic theory, we evaluated how endogenous (population sizes, warfare and social upscaling) and exogenous (climate) variables module the dynamic in past agrarian societies.
View Article and Find Full Text PDFIntroduction: Forestry in many parts of the world depends on exotic species, making this industry a source of invasions in some countries. Among others, plantations of the genus Pinus, Eucalyptus, Acacia, Populus, and Pseudotsuga underpin the forestry industry and are a vital component of many countries economies. Among woody plants, the cosmopolitan genus Acacia includes some of the most commonly planted trees worldwide.
View Article and Find Full Text PDFThe swap in abundance between two Calanus species in the North Sea during the 1980s constitutes a quintessential example of regime shift, with important ecosystemic and economic repercussions because these copepods constitute a major component of the diet of larval and juvenile cods. It is hypothesized that this transition was driven by gradual changes in primary productivity, the North Atlantic Oscillation (NAO) and sea surface temperatures (SST), and yet how these factors contribute to the population dynamics of these two species and the overall regime shift remains unclear. Here, we combine a highly resolved and spatially structured longitudinal dataset with population dynamics theory-based models to obtain a thorough and more detailed description of populations' responses to the regime shift observed in the North Sea.
View Article and Find Full Text PDFCommunity similarity is often assessed through similarities in species occurrences and abundances (i.e., compositional similarity) or through the distribution of species interactions (i.
View Article and Find Full Text PDFKnowledge of the ecological dynamics between hosts and pathogens during the initial stages of disease emergence is crucial to understanding the potential for evolution of new interspecific interactions. Tasmanian devil () populations have declined precipitously owing to infection by a transmissible cancer (devil facial tumour disease, DFTD) that emerged approximately 20 years ago. Since the emergence of DFTD, and as the disease spreads across Tasmania, the number of devils has dropped up to 90% across 80% of the species's distributional range.
View Article and Find Full Text PDFBackground: Climate change is one of the greatest threats to biodiversity, pushing species to shift their distribution ranges and making existing protected areas inadequate. Estimating species distribution and potential modifications under climate change are then necessary for adjusting conservation and management plans; this is especially true for endangered species. An example of this issue is the huemul (), an endemic endangered deer from the southern Andes Range, with less than 2,000 individuals.
View Article and Find Full Text PDFStomata distribution is an example of biological patterning. Formal methods used to study stomata patterning are generally based on point-pattern analysis, which assumes that stomata are points and ignores the constraints imposed by size on the placement of neighbors. The inclusion of size in the analysis requires the use of a null model based on finite-size object geometry.
View Article and Find Full Text PDFClimate change and biological invasions pose one of the greatest threats to biodiversity. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance may also impact native and invasive organisms, although differentially. We assessed the combined effects of the mean and the variance of temperature on the expression of heat shock protein (hsp90) in adults of the invasive fruit fly Drosophila melanogaster and the native Drosophila gaucha in Mediterranean habitats of central Chile.
View Article and Find Full Text PDFBackground: Currently, many species are facing serious conservation problems due to habitat loss. The impact of the potential loss of biodiversity associated with habitat loss is difficult to measure. This is particularly the case with inconspicuous species such as the threatened pudú (Pudu puda), an endemic Cervidae of temperate forests of Chile and Argentina.
View Article and Find Full Text PDFBackground: The spatial-temporal dynamics of Bordetella pertussis remains as a highly interesting case in infectious disease epidemiology. Despite large-scale vaccination programs in place for over 50 years around the world, frequent outbreaks are still reported in many countries.
Methods: Here, we use annual time series of pertussis incidence from the thirteen different regions of Chile (1952-2010) to study the spatial-temporal dynamics of Pertussis.
The tunicate Ciona intestinalis is an opportunistic invader with high potential for causing economic losses in aquaculture centers. Recent phylogenetic and population genetic analysis support the existence of a genetic complex described as C. intestinalis with two main dominant species (sp A and B) occurring worldwide.
View Article and Find Full Text PDFThere is mounting evidence that urban areas influence biodiversity. Generalizations however require that multiple urban areas on multiple continents be examined. Here we evaluated the role of urban areas on avian diversity for a South American city, allowing us to examine the effects of urban features common worldwide, using the city of Valdivia, Chile as case study.
View Article and Find Full Text PDFWhen dispersal is not an option to evade warming temperatures, compensation through behavior, plasticity, or evolutionary adaptation is essential to prevent extinction. In this work, we evaluated whether there is physiological plasticity in the thermal performance curve (TPC) of maximum jumping speed in individuals acclimated to current and projected temperatures and whether there is an opportunity for behavioral thermoregulation in the desert landscape where inhabits the northernmost population of the endemic frog Pleurodema thaul. Our results indicate that individuals acclimated to 20°C and 25°C increased the breath of their TPCs by shifting their upper limits with respect to when they were acclimated at 10°C.
View Article and Find Full Text PDFPine sawyer beetle species of the genus Monochamus are vectors of the nematode pest Bursaphelenchus xylophilus. The introduction of these species into new habitats is a constant threat for those regions where the forestry industry depends on conifers, and especially on species of Pinus. To obtain information about the potential risk of establishment of these insects in Chile, we performed climate-based niche modeling using data for five North American and four Eurasian Monochamus species using a Maxent approach.
View Article and Find Full Text PDFTemperature is a major factor affecting population abundance and individual performance. Net reproductive rate (R0) and intrinsic rate of increase (r) differ in their response to different temperature regimes, and much of the difference is mediated by generation time (Tg). Here, we evaluate the effects of thermal mean and variability on R0, r and Tg, at four population densities in Drosophila melanogaster.
View Article and Find Full Text PDFBackground: Synchrony among populations has been attributed to three major hypotheses: dispersal, the Moran effect, and trophic-level interactions. Unfortunately, simultaneous testing of these hypotheses demands complete and detailed data, which are scarce for ecological systems.
Methodology/principal Findings: Hudson's Bay Company data on mink and muskrat fur returns in Canada represent an excellent opportunity to test these hypotheses because of the detailed spatial and temporal data from this predator-prey system.
Global climate change poses one of the greatest threats to biodiversity. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the combined effects of the mean and variance of temperature on thermal tolerances, organismal survival, and population growth in Drosophila melanogaster.
View Article and Find Full Text PDF1. The role of climate variability in determining the spatial and temporal patterns of numerical fluctuations is a central problem in ecology. The influence of the North Atlantic Oscillation (NAO) index on the population dynamics and spatial synchrony of the green spruce aphid Elatobium abietinum across the UK was shown.
View Article and Find Full Text PDF