Curcumin is a compound of great importance in the food industry due to its biological and pharmacological properties, which include being an antioxidant, anti-inflammatory, antibacterial, antiviral, and anticarcinogenic. This paper proposes the synthesis of an electrochemical sensor based on molecularly imprinted polymers (MIPs) and MWCNT by drop casting deposited on a glassy carbon electrode (GCE) for the selective quantification of curcumin in food samples. The synthesized compounds are characterized by Fourier transform infrared (IR), Brunauer-Emmett-Teller (BET), and electrochemical techniques such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV).
View Article and Find Full Text PDFCurcumin is the main colorant of the curcuma longa plant, a food with many benefits for human health. This work aims to synthesize a novel molecularly imprinted polymer (MIP) for the selective detection of curcumin in real samples obtained from the local market of Peru. MIPs were synthesized via bulk polymerization using curcumin, acrylamide, ethylene glycol dimethacrylate, ABCV, and acetonitrile.
View Article and Find Full Text PDFWe have developed a sensing system that utilizes a low-cost computer (Raspberry Pi) and its imaging camera as an optical sensing core for the continuous detection of NO in the air (PiSENS-A). The sensor is based on colour development as a consequence of the interaction of the gas with an absorbing solution. The PiSENS-A is thoroughly calibrated over the hourly mean which is used as one of the key metrics in evaluating air quality.
View Article and Find Full Text PDF