Publications by authors named "Sergio Escamilla"

Background: Synaptic and extrasynaptic distribution of N-methyl-D-aspartate receptors (NMDARs) has not been addressed in the brain from Alzheimer´s disease (AD) subjects, despite their contribution to neurodegeneration.

Methods: We have developed a protocol to isolate synaptic and extrasynaptic membranes from controls and AD frontal cortex. We characterized the distribution of the NMDAR subunits GluN2B, GluN2A, GluN1, and GluN3A, as well as post-translational modifications, such as phosphorylation and glycosylation.

View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors with key roles in synaptic communication and plasticity. The activation of synaptic NMDARs initiates plasticity and stimulates cell survival. In contrast, the activation of extrasynaptic NMDARs can promote cell death underlying a potential mechanism of neurodegeneration occurring in Alzheimer's disease (AD).

View Article and Find Full Text PDF

The identification of critical factors that can worsen the mechanisms contributing to the pathophysiology of Alzheimer disease is of paramount importance. Thyroid hormones (TH) fit this criterion. Epidemiological studies have identified an association between altered circulating TH levels and Alzheimer disease.

View Article and Find Full Text PDF

Patients with mutations in the thyroid hormone (TH) cell transporter monocarboxylate transporter 8 (MCT8) gene develop severe neuropsychomotor retardation known as Allan-Herndon-Dudley syndrome (AHDS). It is assumed that this is caused by a reduction in TH signaling in the developing brain during both intrauterine and postnatal developmental stages, and treatment remains understandably challenging. Given species differences in brain TH transporters and the limitations of studies in mice, we generated cerebral organoids (COs) using human induced pluripotent stem cells (iPSCs) from MCT8-deficient patients.

View Article and Find Full Text PDF

N-methyl-D-aspartate (NMDA) receptor (NMDAR) dysregulation is thought to contribute to impaired cognition and neurodegeneration in a variety of brain disorders. In a recent article, Zhong et al. proposed that deficiency of the NMDAR subunit GluN3A may be a primary pathogenic factor in sporadic Alzheimer´s disease (AD) based on evidence for degenerative excitotoxicity and cognitive impairment in aging mice lacking GluN3A.

View Article and Find Full Text PDF

Background: Members of the low-density lipoprotein (LDL) receptor family are involved in endocytosis and in transducing signals, but also in amyloid precursor protein (APP) processing and β-amyloid secretion. ApoER2/LRP8 is a member of this family with key roles in synaptic plasticity in the adult brain. ApoER2 is cleaved after the binding of its ligand, the reelin protein, generating an intracellular domain (ApoER2-ICD) that modulates reelin gene transcription itself.

View Article and Find Full Text PDF