In this work, we present an experimental study of the primary and secondary relaxations of the semi-crystalline polymer polyethylene naphthalate by modulated differential scanning calorimetry, Thermally Stimulated Depolarization Currents (TSDCs), and Broadband Dielectric Spectroscopy (BDS) and how they are affected by physical aging. Three dipolar relaxation modes can be observed: from slowest to fastest: the primary α relaxation, which vitrifies at the glass transition temperature, Tgα, and two secondary relaxations, named β* and β. Modulated differential scanning calorimetry results show how the secondary β* relaxation also vitrifies, giving rise to an additional glass transition at Tgβ* < Tgα.
View Article and Find Full Text PDFIn this work, we present a Deuteron Nuclear Magnetic Resonance (DNMR) study of the non-symmetric odd liquid crystal dimer -(4-cyanobiphenyl-4'-yloxy)--(1-pyrenimine-benzylidene-4'-oxy) heptane (CBO7O.Py), formed by a pro-mesogenic cyanobiphenyl unit and a bulky pyrene-containing unit, linked alkoxy flexible chain. We have synthesized two partially deuterated samples: one with the deuterium atoms in the cyanobiphenyl moiety (dCBO7O.
View Article and Find Full Text PDFPhys Rev E
November 2022
We have performed dielectric spectroscopy and thermally stimulated-depolarization-current experiments to study the molecular dynamics of the twist-bend nematic phase close to the glass transition of two members of the 1″,7'-bis(4-cyanobiphenyl-4'-yl)alkane homologous series (CBnCB): the liquid crystal (LC) dimers CB9CB and CB7CB, as well as a binary mixture of both. By doping CB9CB with a small quantity of CB7CB, the crystallization is inhibited when cooling the sample down, while the bulk properties of CB9CB are retained and we can investigate the supercooled behavior close to the glass transition. The study reveals that the inter- and intramolecular interactions of the mixture are similar to those of pure CB9CB and confirms that there is a single glass transition in symmetric LC dimers.
View Article and Find Full Text PDFUniaxial order parameters of the nematic and columnar mesophases in the lyotropic chromonic liquid crystal Sunset Yellow FCF have been determined from deuteron nuclear magnetic resonance, where random confinement of the system by the dispersion of aerosil nanoparticles has been performed to help obtain the angular dependent spectra. The long-time evolution study of the order parameters shows that the system requires tens of hours to stabilize after a deep change in temperature, in contrast with the very fast assembly process of the aggregates. Finally, the degree of order of the water molecules, forced by the uniaxial environment, has been determined.
View Article and Find Full Text PDFIn the present work, a detailed analysis of the glassy behavior and the relaxation dynamics of the liquid crystal dimer α-(4-cyanobiphenyl-4'-yloxy)-ω-(1-pyrenimine-benzylidene-4'-oxy) heptane (CBO7O.Py) throughout both nematic and smectic-A mesophases by means of broadband dielectric spectroscopy has been performed. CBO7O.
View Article and Find Full Text PDFIn this paper, we report the temperature behavior of an optimized disordered photonic system-based liquid crystal by means of heat capacity and refractive index measurements. The scattering system is formed by a porous borosilicate glass random matrix (about 60%) infiltrated with a smectogenic liquid crystal (about 16%) and a small amount of laser dye (0.1%).
View Article and Find Full Text PDFThe synthesis and characterisation of the nonsymmetric liquid crystal dimer, 1-(4-cyanobiphenyl-4'-yloxy)-6-(4-cyanobiphenyl-4'-yl)hexane (CB6OCB) is reported. An enantiotropic nematic (N)-twist-bend nematic (NTB) phase transition is observed at 109 °C and a nematic-isotropic phase transition at 153 °C. The NTB phase assignment has been confirmed using polarised light microscopy, freeze fracture transmission electron microscopy (FFTEM), (2)H-NMR spectroscopy, and X-ray diffraction.
View Article and Find Full Text PDFWe report a comprehensive dielectric characterization of a liquid crystalline binary mixture composed of the symmetric mesogenic dimer CB7CB and the nonsymmetric mesogenic dimer FFO9OCB. In addition to the high-temperature nematic phase, such a binary mixture shows a twist-bend nematic phase at room temperature which readily vitrifies on slow cooling. Changes in the conformational distribution of the dimers are reflected in the dielectric permittivity and successfully analyzed by means of an appropriate theoretical model.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2015
The nature of the nematic-nematic phase transition in the liquid crystal dimer 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane (CB9CB) has been investigated using techniques of calorimetry, dynamic dielectric response measurements, and (2)H NMR spectroscopy. The experimental results for CB9CB show that, like the shorter homologue CB7CB, the studied material exhibits a normal nematic phase, which on cooling undergoes a transition to the twist-bend nematic phase (N(TB)), a uniaxial nematic phase, promoted by the average bent molecular shape, in which the director tilts and precesses describing a conical helix. Modulated differential scanning calorimetry has been used to analyze the nature of the N(TB)-N phase transition, which is found to be weakly first order, but close to tricritical.
View Article and Find Full Text PDFWe report an experimental study on confined systems formed by butyloxybenzylidene octylaniline liquid crystal (4O.8) + γ-alumina nanoparticles. The effects of the confinement in the thermal and dielectric properties of the liquid crystal under different densities of nanoparticles is analyzed by means of high resolution Modulated Differential Scanning Calorimetry (MDSC) and broadband dielectric spectroscopy.
View Article and Find Full Text PDFIn this work, a study of the nematic (N)-isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4'-yloxy)-ω-(1-pyrenimine-benzylidene-4'-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (N) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (N)-isotropic (I) phase transition is first-order in nature, whereas the N-I phase transition is second-order.
View Article and Find Full Text PDF