J Chem Theory Comput
July 2024
Estimating the potential energy of a molecular system at a quantum level of theory is a task of paramount importance in computational chemistry. The often employed density functional theory approach allows one to accomplish this task, yet most often at significant computational costs. This prompted the community to develop so-called machine learning potentials to achieve near-quantum accuracy at molecular mechanics computational cost.
View Article and Find Full Text PDFTyrosine kinases are a subfamily of kinases with critical roles in cellular machinery. Dysregulation of their active or inactive forms is associated with diseases like cancer. This study aimed to holistically understand their flexibility-activity relationships, focusing on pockets and fluctuations.
View Article and Find Full Text PDFThe choice of target pocket is a key step in a drug discovery campaign. This step can be supported by druggability prediction. In the literature, druggability prediction is often approached as a two-class classification task that distinguishes between druggable and non-druggable (or less druggable) pockets (or voxels).
View Article and Find Full Text PDFThe ribosome stalling mechanism is a crucial biological process, yet its atomistic underpinning is still elusive. In this framework, the human XBP1u translational arrest peptide (AP) plays a central role in regulating the unfolded protein response (UPR) in eukaryotic cells. Here, we report multimicrosecond all-atom molecular dynamics simulations designed to probe the interactions between the XBP1u AP and the mammalian ribosome exit tunnel, both for the wild type AP and for four mutant variants of different arrest potencies.
View Article and Find Full Text PDFFront Med (Lausanne)
October 2021
Rare diseases (RDs) are complicated health conditions that are difficult to be managed at several levels. The scarcity of available data chiefly determines an intricate scenario even for experts and specialized clinicians, which in turn leads to the so called "diagnostic odyssey" for the patient. This situation calls for innovative solutions to support the decision process quantitative and automated tools.
View Article and Find Full Text PDFComputational capabilities are rapidly increasing, primarily because of the availability of GPU-based architectures. This creates unprecedented simulative possibilities for the systematic and robust computation of thermodynamic observables, including the free energy of a drug binding to a target. In contrast to calculations of relative binding free energy, which are nowadays widely exploited for drug discovery, we here push the boundary of computing the binding free energy and the potential of mean force.
View Article and Find Full Text PDFLigand shell-protected gold nanoparticles can form nanoreceptors that recognize and bind to specific molecules in solution, with numerous potential innovative applications in science and industry. At this stage, the challenge is to rationally design such nanoreceptors to optimize their performance and boost their further development. Toward this aim, we have developed a new computational tool, Nanotron.
View Article and Find Full Text PDFComputational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are mainly used to optimize promising new compounds by estimating their binding affinity to proteins.
View Article and Find Full Text PDFSummary: A primary problem in high-throughput genomics experiments is finding the most important genes involved in biological processes (e.g. tumor progression).
View Article and Find Full Text PDFLocal changes in the structure of G-protein coupled receptors (GPCR) binders largely affect their pharmacological profile. While the sought efficacy can be empirically obtained by introducing local modifications, the underlining structural explanation can remain elusive. Here, molecular dynamics (MD) simulations of the eticlopride-bound inactive state of the Dopamine D3 Receptor (D3DR) have been clustered using a machine learning-based approach in the attempt to rationalize the efficacy change in four congeneric modulators.
View Article and Find Full Text PDFIt is widely accepted that drug-target association and dissociation rates directly affect drug efficacy and safety. To rationally optimize drug binding kinetics, one must know the atomic arrangement of the protein-ligand complex during the binding/unbinding process in order to detect stable and metastable states. Whereas experimental approaches can determine kinetic constants with fairly good accuracy, computational approaches based on molecular dynamics (MD) simulations can deliver the atomistic details of the unbinding process.
View Article and Find Full Text PDFIn this paper, we introduce the concept of principal paths in data space; we show that this is a well-characterized problem from the point of view of cognition, and that it can lead to salient insights in the analyzed data enabling topological/holistic descriptions. These paths, interestingly, can be interpreted as local principal curves, and in this paper, we suggest that they are analogous to what, in the statistical mechanics realm, are called minimum free-energy paths. Here, we move that concept from physics to data space and compute them in both the original and the kernel space.
View Article and Find Full Text PDFSummary: NanoShaper is a program specifically aiming the construction and analysis of the molecular surface of nanoscopic systems. It uses ray-casting for parallelism and it performs analytical computations whenever possible to maximize robustness and accuracy of the approach. Among the other features, NanoShaper provides volume, surface area, including that of internal cavities, for any considered molecular system.
View Article and Find Full Text PDFEngineering chemical entities to modify how pharmaceutical targets function, as it is done in drug design, requires a good understanding of molecular recognition and binding. In this context, the limitations of statically describing bimolecular recognition, as done in docking/scoring, call for insightful and efficient dynamical investigations. On the experimental side, the characterization of dynamical binding processes is still in its infancy.
View Article and Find Full Text PDFIn this paper, we introduce the BiKi Life Sciences suite. This software makes it easy for computational medicinal chemists to run ad hoc molecular dynamics protocols in a novel and task-oriented environment; as a notebook, BiKi (acronym of Binding Kinetics) keeps memory of any activity together with dependencies among them. It offers unique accelerated protein-ligand binding/unbinding methods and other useful tools to gain actionable knowledge from molecular dynamics simulations and to simplify the drug discovery process.
View Article and Find Full Text PDFThe detection and characterization of binding pockets and allosteric communication in proteins is crucial for studying biological regulation and performing drug design. Nowadays, ever-longer molecular dynamics (MD) simulations are routinely used to investigate the spatiotemporal evolution of proteins. Yet, there is no computational tool that can automatically detect all the pockets and potential allosteric communication networks along these extended MD simulations.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2016
Herein, we present a new computational approach for analyzing hydration patterns in biomolecular systems. This protocol aims to efficiently identify regions where structural waters may be located and, in the case of protein-ligand binding, where displacing one or more water molecules could be advantageous in terms of affinity and/or residence time. We validated our approach on the adenosine A receptor, a target of significant pharmaceutical relevance.
View Article and Find Full Text PDFLigand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
July 2017
Recognizing the samples belonging to one class in a heterogeneous data set is a very interesting but tough machine learning task. Some samples of the data set can be actual outliers or members of other classes for which training examples are lacking. In contrast to other kernel approaches present in the literature, in this work, the problem is faced defining a one-class kernel machine that delivers the probability for a sample to belong to the support of the distribution and that can be efficiently trained by a hybrid sequential minimal optimization-expectation maximization algorithm.
View Article and Find Full Text PDFThis paper moves from the affinities between two well-known learning schemes that apply randomization in the training process, namely, Extreme Learning Machines (ELMs) and the learning framework using similarity functions. These paradigms share a common approach involving data remapping and linear separators, but differ in the role of randomization within the respective learning algorithms. The paper presents an integrated approach connecting the two models, which ultimately yields a new variant of the basic ELM.
View Article and Find Full Text PDF