Tissue inflammation is often broadly associated with cellular damage, yet sterile inflammation also plays critical roles in beneficial tissue remodeling. In the central nervous system, this is observed through a predominantly innate immune response in retinal vascular diseases such as age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity. Here, we set out to elucidate the dynamics of the immune response during progression and regression of pathological neovascularization in retinopathy.
View Article and Find Full Text PDFCompromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is invariably associated with the chronic accumulation of activated mononuclear phagocytes in the subretinal space. The mononuclear phagocytes are composed of microglial cells but also of monocyte-derived cells, which promote photoreceptor degeneration and choroidal neovascularization. Infiltrating blood monocytes can originate directly from bone marrow, but also from a splenic reservoir, where bone marrow monocytes develop into angiotensin II receptor (ATR1) splenic monocytes.
View Article and Find Full Text PDFCellular adaptation to low oxygen tension triggers primitive pathways that ensure proper cell function. Conditions of hypoxia and low glucose are characteristic of injured tissues and hence successive waves of inflammatory cells must be suited to function under low oxygen tension and metabolic stress. While Hypoxia-Inducible Factor (HIF)-1α has been shown to be essential for the inflammatory response of myeloid cells by regulating the metabolic switch to glycolysis, less is known about how HIF1α is triggered in inflammation.
View Article and Find Full Text PDFPathological neovascularization in age-related macular degeneration (nvAMD) drives the principal cause of blindness in the elderly. While there is a robust genetic association between genes of innate immunity and AMD, genome-to-phenome relationships are low, suggesting a critical contribution of environmental triggers of disease. Possible insight comes from the observation that a past history of infection with pathogens such as Chlamydia pneumoniae, or other systemic inflammation, can predispose to nvAMD in later life.
View Article and Find Full Text PDFAge-related macular degeneration is a prevalent neuroinflammatory condition and a major cause of blindness driven by genetic and environmental factors such as obesity. In diseases of aging, modifiable factors can be compounded over the life span. We report that diet-induced obesity earlier in life triggers persistent reprogramming of the innate immune system, lasting long after normalization of metabolic abnormalities.
View Article and Find Full Text PDFObesity is a major risk factor for cancer. Conventional thought suggests that elevated adiposity predisposes to heightened inflammatory stress and potentiates tumor growth, yet underlying mechanisms remain ill-defined. Here, we show that tumors from patients with a body mass index >35 carry a high burden of senescent cells.
View Article and Find Full Text PDFThe beneficial effects of brown adipose tissue (BAT) on obesity and associated metabolic diseases are mediated through its capacity to dissipate energy as heat. While immune cells, such as tissue-resident macrophages, are known to influence adipose tissue homeostasis, relatively little is known about their contribution to BAT function. Here we report that neuropilin-1 (NRP1), a multiligand single-pass transmembrane receptor, is highly expressed in BAT-resident macrophages.
View Article and Find Full Text PDFDiabetic retinopathy is characterized by dysfunction of the retinal vascular network, combined with a persistent low-grade inflammation that leads to vision-threatening complications. Netrin-4 (NTN4) is a laminin-related secreted protein and guidance cue molecule present in the vascular basal membrane and highly expressed in the retina. A number of studies inferred that the angiogenic abilities of NTN4 could contribute to stabilize vascular networks and modulate inflammation.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) in its various forms is a leading cause of blindness in industrialized countries. Here, we provide evidence that ligands for neuropilin-1 (NRP1), such as Semaphorin 3A and VEGF-A, are elevated in the vitreous of patients with AMD at times of active choroidal neovascularization (CNV). We further demonstrate that NRP1-expressing myeloid cells promote and maintain CNV.
View Article and Find Full Text PDFAttenuating pathological angiogenesis in diseases characterized by neovascularization such as diabetic retinopathy has transformed standards of care. Yet little is known about the molecular signatures discriminating physiological blood vessels from their diseased counterparts, leading to off-target effects of therapy. We demonstrate that in contrast to healthy blood vessels, pathological vessels engage pathways of cellular senescence.
View Article and Find Full Text PDFMicroRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression. We recently demonstrated that levels of miR-106b were significantly decreased in the vitreous and plasma of patients with neovascular age-related macular degeneration (AMD). Here we show that expression of the miR-106b-25 cluster is negatively regulated by the unfolded protein response pathway of protein kinase RNA-like ER kinase (PERK) in a mouse model of neovascular AMD.
View Article and Find Full Text PDFType 2 diabetes mellitus and hypertension are two major risk factors leading to heart failure and cardiovascular damage. Lowering blood sugar by the sodium-glucose co-transporter 2 inhibitor empagliflozin provides cardiac protection. We established a new rat model that develops both inducible diabetes and genetic hypertension and investigated the effect of empagliflozin treatment to test the hypothesis if empagliflozin will be protective in a heart failure model which is not based on a primary vascular event.
View Article and Find Full Text PDFIn developed countries, the leading causes of blindness such as diabetic retinopathy are characterized by disorganized vasculature that can become fibrotic. Although many such pathological vessels often naturally regress and spare sight-threatening complications, the underlying mechanisms remain unknown. Here, we used orthogonal approaches in human patients with proliferative diabetic retinopathy and a mouse model of ischemic retinopathies to identify an unconventional role for neutrophils in vascular remodeling during late-stage sterile inflammation.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2020
The article "Lack of netrin-4 alters vascular remodeling in the retina".
View Article and Find Full Text PDFBrain collateral circulation is an essential compensatory mechanism in response to acute brain ischemia. To study the temporal evolution of brain macro and microcollateral recruitment and their reciprocal interactions in response to different ischemic conditions, we applied a combination of complementary techniques (T2-weighted magnetic resonance imaging [MRI], time of flight [TOF] angiography [MRA], cerebral blood flow [CBF] imaging and histology) in two different mouse models. Hypoperfusion was either induced by permanent bilateral common carotid artery stenosis (BCCAS) or 60-min transient unilateral middle cerebral artery occlusion (MCAO).
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
October 2019
Purpose: Netrin-4 (NTN4) is a protein that plays an important role in the regulation of angiogenesis in the pathological retina. Some evidences show that it can also have a role in inflammation and vascular stability. We will explore these questions in vivo in the mature mouse retina.
View Article and Find Full Text PDFDiabetic macular edema is a major complication of diabetes resulting in loss of central vision. Although heightened vessel leakiness has been linked to glial and neuronal-derived factors, relatively little is known on the mechanisms by which mature endothelial cells exit from a quiescent state and compromise barrier function. Here we report that endothelial NOTCH1 signaling in mature diabetic retinas contributes to increased vascular permeability.
View Article and Find Full Text PDFChanges in cell function occur by specific patterns of intracellular Ca, activating Ca-sensitive proteins. The anoctamin (TMEM16) protein family has Ca-dependent ion channel activity, which provides transmembrane ion transport, and/or Ca-dependent phosphatidyl-scramblase activity. Using amino acid sequence analysis combined with measurements of ion channel function, we clarified the so far unknown Ano4 function as Ca-dependent, non-selective monovalent cation channel; heterologous Ano4 expression in HEK293 cells elicits Ca activated conductance with weak selectivity of K > Na > Li.
View Article and Find Full Text PDFAnimal models of disease are an indispensable element in our quest to understand pathophysiology and develop novel therapies. Ex vivo studies have severe limitations, in particular their inability to study individual disease progression over time. In this respect, non-invasive in vivo technologies offer multiple advantages.
View Article and Find Full Text PDFThe dataset presented in this article complements the article entitled "Myeloid cells contribute indirectly to VEGF expression upon hypoxia via activation of Müller cells" (C. Nürnberg, N. Kociok, C.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
February 2018
Purpose: The model of oxygen-induced retinopathy (OIR) is widely used to analyze pathomechanisms in retinal neovascularization. Previous studies have shown that macrophages (MP) play a key role in vessel formation in OIR, the influence of microglia (MG) having been discussed. The aim of our study was to analyze the spatial and temporal distribution and activation of MP/MG expressing CD115 and CD11b during the process of neovascularization in OIR.
View Article and Find Full Text PDFAnti-VEGF-directed therapies have been a milestone for treating retinal vascular diseases. Depletion of monocyte lineage cells suppresses pathological neovascularization in the oxygen-induced retinopathy mouse model. However, the question whether myeloid-derived VEGF-A expression is responsible for the pathogenesis in oxygen-induced retinopathy remained unknown.
View Article and Find Full Text PDFPurpose: The cellular immune response driven by mononuclear phagocytes (MPs) is crucial for choroidal neovascularization (CNV) progression. Case reports show that a switch from pure anti-vascular endothelial growth factor-A (VEGF-A) intravitreal treatment to aflibercept, a drug with combined anti-VEGF-A and anti-placenta growth factor (PlGF) activity, can be beneficial for patients who do not respond to anti-VEGF-A alone. Since MPs harbor VEGFR1, we hypothesize that the interplay of P1GF/vascular endothelial growth factor receptor 1 (VEGFR1) in immune cells plays a pivotal role for CNV.
View Article and Find Full Text PDF