We demonstrate experimentally that, applying optimal protocols that drive the system between two equilibrium states characterized by a free energy difference ΔF, we can maximize the probability of performing the transition between the two states with a work W smaller than ΔF. The second law holds only on average, resulting in the inequality ⟨W⟩≥ΔF. The experiment is performed using an underdamped oscillator evolving in a double-well potential.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Landauer's principle makes a strong connection between information theory and thermodynamics by stating that erasing a one-bit memory at temperature [Formula: see text] requires an average energy larger than [Formula: see text], with [Formula: see text] Boltzmann's constant. This tiny limit has been saturated in model experiments using quasistatic processes. For faster operations, an overhead proportional to the processing speed and to the memory damping appears.
View Article and Find Full Text PDFThe same system can exhibit a completely different dynamical behavior when it evolves in equilibrium conditions or when it is driven out-of-equilibrium by, e.g., connecting some of its components to heat baths kept at different temperatures.
View Article and Find Full Text PDFThe Landauer principle states that at least k_{B}Tln2 of energy is required to erase a 1-bit memory, with k_{B}T the thermal energy of the system. We study the effects of inertia on this bound using as one-bit memory an underdamped micromechanical oscillator confined in a double-well potential created by a feedback loop. The potential barrier is precisely tunable in the few k_{B}T range.
View Article and Find Full Text PDFAn autonomous out-of-equilibrium Maxwell's demon is used to reverse the natural direction of the heat flux between two electric circuits kept at different temperatures and coupled by the electric thermal noise. The demon does not process any information, but it achieves its goal by using a frequency-dependent coupling with the two reservoirs of the system. There is no mean energy flux between the demon and the system, but the total entropy production (system+demon) is positive.
View Article and Find Full Text PDFIn recent years the lattice Boltzmann (LB) methodology has been fruitfully extended to include the effects of thermal fluctuations. So far, all studied cases pertain to equilibrium fluctuations, i.e.
View Article and Find Full Text PDFWe provide a theoretical and experimental protocol that dynamically controls the effective temperature of a thermal bath, through a well-designed noise engineering. We use this powerful technique to shortcut the relaxation of an overdamped Brownian particle in a quadratic potential by a joint time engineering of the confinement strength and of the noise. For an optically trapped colloid, we report an equilibrium recovery time reduced by about two orders of magnitude compared to the natural relaxation time.
View Article and Find Full Text PDFWe show that critical Casimir effects can be accessed through direct simulation of a model binary fluid passing through the demixing transition. We work in the semi-grand-canonical ensemble, in slab geometry, in which the Casimir force appears as the excess of the generalized pressure, P_{⊥}-nμ. The excesses of the perpendicular pressure, P_{⊥}, and of nμ, are individually of much larger amplitude.
View Article and Find Full Text PDFWe analyze experimental data obtained from an electrical circuit having components at different temperatures, showing how to predict its response to temperature variations. This illustrates in detail how to utilize a recent linear response theory for nonequilibrium overdamped stochastic systems. To validate these results, we introduce a reweighting procedure that mimics the actual realization of the perturbation and allows extracting the susceptibility of the system from steady-state data.
View Article and Find Full Text PDFA fundamental and intrinsic property of any device or natural system is its relaxation time relax, which is the time it takes to return to equilibrium after the sudden change of a control parameter [1]. Reducing , is frequently necessary, and is often obtained by a complex feedback process. To overcome the limitations of such an approach, alternative methods based on driving have been recently demonstrated [2, 3], for isolated quantum and classical systems [4-9].
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2015
We report the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture when this is enlightened by a strongly focused infrared laser beam. The mixture is poly-methyl-meth-acrylate (PMMA)-3-octanone, which has an upper critical solution temperature at T(c)=306.6K and volume fraction ϕ(c)=12.
View Article and Find Full Text PDFWe present an innovative technique which allows the simultaneous measurement of the dielectric constant of a material at many frequencies, spanning a four orders of magnitude range chosen between 10(-2) Hz and 10(4) Hz. The sensitivity and accuracy are comparable to those obtained using standard single frequency techniques. The technique is based on three new and simple features: (a) the precise real time correction of the amplification of a current amplifier, (b) the specific shape of the excitation signal and its frequency spectrum, and (c) the precise synchronization between the generation of the excitation signal and the acquisition of the dielectric response signal.
View Article and Find Full Text PDFIn 1961, Rolf Landauer argued that the erasure of information is a dissipative process. A minimal quantity of heat, proportional to the thermal energy and called the Landauer bound, is necessarily produced when a classical bit of information is deleted. A direct consequence of this logically irreversible transformation is that the entropy of the environment increases by a finite amount.
View Article and Find Full Text PDFWe study experimentally the slow growth of a single crack in polycarbonate films submitted to uniaxial and constant imposed stress. For this viscoplastic material, we uncover a dynamical law that describes the dependence of the instantaneous crack velocity with experimental parameters. The law involves a Dugdale-Barenblatt static description of crack tip plastic zones associated to an Eyring's law and an empirical dependence with the crack length that may come from a residual elastic field.
View Article and Find Full Text PDFWe study experimentally the slow growth of a single crack in a fibrous material and observe stepwise growth dynamics. We model the material as a lattice where the crack is pinned by elastic traps and grows due to thermally activated stress fluctuations. In agreement with experimental data we find that the distribution of step sizes follows subcritical point statistics with a power law (exponent 3/2) and a stress-dependent exponential cutoff diverging at the critical rupture threshold.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2002
The average time for the onset of macroscopic fractures is analytically and numerically investigated in the fiber-bundle model with quenched disorder and thermal noise under a constant load. We find an implicit exact expression for the failure time in the low-temperature limit that is accurately confirmed by direct simulations. The effect of the disorder is to lower the energy barrier.
View Article and Find Full Text PDF