This paper evaluates the physicochemical and biological properties of experimental resin-based dual-cured calcium aluminate (CA) and calcium titanate (CTi) materials for vital pulp therapy (VPT). The experimental dual-cured materials were obtained as two pastes: a) Bis-EMA 10, PEG 400, DHEPT, EDAB, camphorquinone, and butylated hydroxytoluene; and b) fluoride ytterbium, Bis-EMA 10, Bis-EMA 30, benzoyl peroxide, and butylated hydroxytoluene. The materials were divided into six groups based on the added calcium component: MTA (MTA®, Angelus); CLQ (Clinker-Fillapex®, Angelus); CA (calcined at ,1200°C in pastes a and b); CA800 (calcined at 800°C in paste a); CA1200 (calcined at 1,200°C in paste a); and CTi (paste a).
View Article and Find Full Text PDFNovel poly(vinyl alcohol)/chondroitin sulfate (PVA/CS) composite hydrogels containing hydroxyapatite (HA) or Sr-doped HA (HASr) particles were synthesized by a freeze/thaw method and characterized aiming towards biomedical applications. HA and HASr were synthesized by a wet-precipitation method and added to the composite hydrogels in fractions up to 15 wt%. Physical-chemical characterizations of particles and hydrogels included scanning electron microscopy, energy-dispersive spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetry, porosity, compressive strength/elastic modulus, swelling degree, and cell viability.
View Article and Find Full Text PDFObjective: Zirconia and alumina nanoparticles were coated with a silica-rich layer (ALSI and ZRSI) and used to prepare experimental nanohybrid resin composites, which were characterized and compared to a control commercial resin composite (Filtek Z350 XT).
Methods: Silica nanoparticles with sizes compatible to ALSI (Aerosil 150) and ZRSI (Aerosil OX 50) were tested as references. The volume of nanoparticles was equivalent across the composites, which also had consistent content of glass microparticles.
Objective: To investigate the wear behavior of novel graded glass/zirconia materials and their abrasiveness to the antagonist relative to homogeneous zirconias (polished or glazed) and a glass-ceramic.
Methods: Graded glass/zirconia specimens were prepared by sintering with concurrent glass-infiltration of pre-sintered zirconia (3Y-TZP) with a polished or as-machined surface. Monolithic zirconia samples were sintered and their surfaces were polished or glazed (as-machined).
Objective: To synthetize calcium aluminate (C3A) and silver-containing C3A particles (C3A+Ag) testing their effects on the properties of a MTA-based endodontic sealer in comparison to an epoxy resin- and a calcium silicate-based sealer.
Methods: Pure C3A and C3A+Ag particles were synthesized by a chemical method and characterized using XRD to identify crystalline phases. SEM/EDS analysis investigated morphology, particle size, and elemental composition of particles.
The fabrication of zirconia dental restorations is a time-consuming process due to traditional slow sintering schemes; zirconia (Y-TZP) produced by these conventional routes are predominantly opaque. Novel speed sintering protocols have been developed to meet the demand for time and cost effective chairside CAD/CAM-produced restorations, as well as to control ceramic microstructures for better translucency. Although the speed sintering protocols have already been used to densify dental Y-TZP, the wear properties of these restorations remain elusive.
View Article and Find Full Text PDFStatement Of Problem: The color of dental poly(methyl methacrylate) (PMMA) is conventionally rendered by organic and inorganic pigments, which are usually not bonded to the polymer network. Functionalized ceramic pigments can be used to color PMMA, allowing improved chemical interaction with the resin matrix.
Purpose: The purpose of this in vitro study was to synthesize, functionalize, and characterize pink manganese-doped alumina ceramic pigments.
Objectives: This study evaluated the effect of addition of alumina particles (polycrystalline or monocrystalline), with or without silica coating, on the optical and mechanical properties of a porcelain.
Methods: Groups tested were: control (C), polycrystalline alumina (PA), polycrystalline alumina-silica (PAS), monocrystalline alumina (MA), monocrystalline alumina-silica (MAS). Polycrystalline alumina powder was synthesized using a polymeric precursor method; a commercially available monocrystalline alumina powder (sapphire) was acquired.
A microwave-assisted hydrothermal method was applied to synthesize BaZr1-xHfxO3, (BZHO) solid solutions at a low temperature, 140 °C, and relatively short times, 160 min. The detailed features of the crystal structure, at both short and long ranges, as well as the crystal chemistry doping process, are extensively analysed. X-ray diffraction measurements and Raman spectroscopy have been used to confirm that pure and Hf-doped BZO materials present a cubic structure.
View Article and Find Full Text PDF