Publications by authors named "Sergio Casciaro"

Rationale And Objectives: Accurate assessment of fetal head station (FHS) is crucial during labor management to reduce the risk of complications and plan the mode of delivery. Although digital vaginal examination (DVE) has been associated with inaccuracies in FHS assessment, ultrasound (US) evaluation remains dependent on sonographer expertise. This study aimed at investigating the reliability and accuracy of an automatic approach to assess the FHS during labor with transperineal US (TPU).

View Article and Find Full Text PDF

Objectives: To develop a deep learning (DL)-model using convolutional neural networks (CNN) to automatically identify the fetal head position at transperineal ultrasound in the second stage of labor.

Material And Methods: Prospective, multicenter study including singleton, term, cephalic pregnancies in the second stage of labor. We assessed the fetal head position using transabdominal ultrasound and subsequently, obtained an image of the fetal head on the axial plane using transperineal ultrasound and labeled it according to the transabdominal ultrasound findings.

View Article and Find Full Text PDF

Background: Throughout the pregnancy, there is a substantial transfer of calcium from the maternal skeleton to the fetus, which leads to a transient net reduction of the maternal bone mineral density.

Aims: To assess longitudinally the changes in the bone mineral density at the femoral neck between the first and third trimester of pregnancy in a cohort of healthy participants using Radiofrequency Echographic Multi Spectrometry (REMS) technology.

Methods: Prospective, cohort study conducted at the University hospital of Parma, Italy between July 2022 and February 2023.

View Article and Find Full Text PDF

Background: Accurate estimation of the imminent fragility fracture risk currently represents a challenging task. The novel Fragility Score (FS) parameter, obtained during a Radiofrequency Echographic Multi Spectrometry (REMS) scan of lumbar or femoral regions, has been developed for the non-ionizing estimation of skeletal fragility.

Aims: The aim of this study was to assess the performance of FS in the early identification of patients at risk for incident fragility fractures with respect to bone mineral density (BMD) measurements.

View Article and Find Full Text PDF

The aim of this chapter is to review the available pulse-echo approaches for the quantitative evaluation of bone health status, with a specific application to the assessment of possible osteoporosis presence and to the fracture risk prediction. Along with a review of the main in-vivo imaging approaches for skeletal robustness evaluation and fracture risk assessment, further understanding into Radiofrequency Echographic Multi Spectrometry (REMS), an ultrasound-based method measuring clinically relevant bone districts (i.e.

View Article and Find Full Text PDF

Objective: To assess the effectiveness of 3 novel lung ultrasound (LUS)-based parameters: Pneumonia Score and Lung Staging for pneumonia staging and COVID Index, indicating the probability of SARS-CoV-2 infection.

Methods: Adult patients admitted to the emergency department with symptoms potentially related to pneumonia, healthy volunteers and clinical cases from online accessible databases were evaluated. The patients underwent a clinical-epidemiological questionnaire and a LUS acquisition, following a 14-zone protocol.

View Article and Find Full Text PDF

Objective: The maternal bone structure is the largest calcium reserve for the fetus during pregnancy, and this is claimed to lead to a bone mineral density (BMD) reduction in pregnant women. The primary outcome of the present work was to assess the BMD in a group of healthy pregnant women.

Study Design: In this prospective case - control observational study, a non-consecutive group of pregnant women with uncomplicated pregnancy at or >37 weeks were enrolled at the unit of Obstetrics and Gynecology, University of Parma, from February to December 2020.

View Article and Find Full Text PDF

Objectives: To evaluate the accuracy and reliability of a new ultrasound technique for the automatic assessment of the head-perineum distance (HPD) during childbirth.

Methods: HPD was measured on a total of 40 acquisition sessions in 30 laboring women both automatically by an innovative algorithm and manually by trained sonographers, assumed as gold standard.

Results: A significant correlation was found between manual and automatic measurements (Intra-CC = 0.

View Article and Find Full Text PDF
Article Synopsis
  • Silica nanoparticles (SiNPs) are promising for biomedical uses, including targeted drug delivery and molecular imaging, due to their low cost, biocompatibility, and ability to improve ultrasound contrast.* -
  • The study focuses on creating a SiNPs-based system that targets hepatocellular carcinoma cells by attaching a special peptide that binds to a protein called glypican-3 (GPC-3).* -
  • Experimental results demonstrate that the GPC-3-functionalized SiNPs enhance ultrasound imaging contrast and are absorbed by cancer cells without harming their viability.*
View Article and Find Full Text PDF

The aim of this paper was to investigate the clinical feasibility and the accuracy in femoral neck densitometry of the Osteoporosis Score (O.S.), an ultrasound (US) parameter for osteoporosis diagnosis that has been recently introduced for lumbar spine applications.

View Article and Find Full Text PDF

Osteoporosis is a silent disease without any evidence of disease until a fracture occurs. Approximately 200 million people in the world are affected by osteoporosis and 8.9 million fractures occur each year worldwide.

View Article and Find Full Text PDF

Aim of this work was to investigate the automatic echographic detection of an experimental drug delivery agent, halloysite clay nanotubes (HNTs), by employing an innovative method based on advanced spectral analysis of the corresponding "raw" radiofrequency backscatter signals. Different HNT concentrations in a low range (5.5-66 × 10 part/mL, equivalent to 0.

View Article and Find Full Text PDF

Currently, the accepted "gold standard" method for bone mineral density (BMD) measurement and osteoporosis diagnosis is dual-energy X-ray absorptiometry (DXA). However, actual DXA effectiveness is limited by several factors, including intrinsic accuracy uncertainties and possible errors in patient positioning and/or post-acquisition data analysis. DXA employment is also restricted by the typical issues related to ionizing radiation employment (high costs, need of dedicated structures and certified operators, unsuitability for population screenings).

View Article and Find Full Text PDF

We investigated the possible clinical feasibility and accuracy of an innovative ultrasound (US) method for diagnosis of osteoporosis of the spine. A total of 342 female patients (aged 51-60 y) underwent spinal dual X-ray absorptiometry and abdominal echographic scanning of the lumbar spine. Recruited patients were subdivided into a reference database used for US spectral model construction and a study population for repeatability and accuracy evaluation.

View Article and Find Full Text PDF

Since the recognition of disease molecular basis, it has become clear that the keystone moments of medical practice, namely early diagnosis, appropriate therapeutic treatment and patient follow-up, must be approached at a molecular level. These objectives will be in the near future more effectively achievable thanks to the impressive developments in nanotechnologies and their applications to the biomedical field, starting-up the nanomedicine era. The continuous advances in the development of biocompatible smart nanomaterials, in particular, will be crucial in several aspects of medicine.

View Article and Find Full Text PDF

Aim: To experimentally investigate the acoustical behavior of different dual-mode nanosized contrast agents (NPCAs) for echographic medical imaging at low ultrasound (US) frequency.

Methods: We synthesized three different nanosized structures: (1) Pure silica nanospheres (SiNSs); (2) FePt-iron oxide (FePt-IO)-coated SiNSs; and (3) IO-coated SiNSs, employing three different diameter of SiNS-core (160, 330 and 660 nm). Tissue mimicking phantoms made of agarose gel solution containing 5 mg of different NPCAs in 2 mL-Eppendorf tubes, were insonified by a commercial echographic system at three different low US pulse values (2.

View Article and Find Full Text PDF

Effective prevention and management of osteoporosis would require suitable methods for population screenings and early diagnosis. Current clinically-available diagnostic methods are mainly based on the use of either X-rays or ultrasound (US). All X-ray based methods provide a measure of bone mineral density (BMD), but it has been demonstrated that other structural aspects of the bone are important in determining fracture risk, such as mechanical features and elastic properties, which cannot be assessed using densitometric techniques.

View Article and Find Full Text PDF

Fetal malformations are very frequent in industrialized countries. Although advanced maternal age may affect pregnancy outcome adversely, 80%-90% of fetal malformations occur in the absence of a specific risk factor for parents. The only effective approach for prenatal screening is currently represented by an ultrasound scan.

View Article and Find Full Text PDF

Labor progression is routinely assessed through transvaginal digital inspections, meaning that the clinical decisions taken during the most delicate phase of pregnancy are subjective and scarcely supported by technological devices. In response to such inadequacies, we combined intrapartum echographic acquisitions with advanced tracking algorithms in a new method for noninvasive, quantitative, and automatic monitoring of labor. Aim of this work is the preliminary clinical validation and accuracy evaluation of our automatic algorithm in assessing progression angle (PA) and fetal head station (FHS).

View Article and Find Full Text PDF

Prototypal software algorithms for advanced spectral analysis of echographic images were developed to perform automatic detection of simulated tumor masses at two different pathological stages. Previously published works documented the possibility of characterizing macroscopic variation of mechanical properties of tissues through elastographic techniques, using different imaging modalities, including ultrasound (US); however, the accuracy of US-based elastography remains affected by the variable manual modality of the applied compression and several attempts are under investigation to overcome this limitation. Quantitative US (QUS), such as Fourier- and wavelet-based analyses of the RF signal associated with the US images, has been developed to perform a microscopic-scale tissue-type imaging offering new solutions for operator-independent examinations.

View Article and Find Full Text PDF

Cardiovascular diseases are the primary cause of mortality in the industrialized world, and arterial obstruction, triggered by rupture-prone atherosclerotic plaques, lead to myocardial infarction and cerebral stroke. Vulnerable plaques do not necessarily occur with flow-limiting stenosis, thus conventional luminographic assessment of the pathology fails to identify unstable lesions. In this review we discuss the currently available imaging modalities used to investigate morphological features and biological characteristics of the atherosclerotic plaque.

View Article and Find Full Text PDF

Purpose: To evaluate the diagnostic performance of gold nanorod (GNR)-enhanced optoacoustic imaging employing a conventional echographic device and to determine the most effective operative configuration in order to assure optoacoustic effectiveness, nanoparticle stability, and imaging procedure safety.

Methods: The most suitable laser parameters were experimentally determined in order to assure nanoparticle stability during the optoacoustic imaging procedures. The selected configuration was then applied to a novel tissue-mimicking phantom, in which GNR solutions covering a wide range of low concentrations (25-200 pM) and different sample volumes (50-200 μL) were exposed to pulsed laser irradiation.

View Article and Find Full Text PDF

Molecular imaging techniques play an increasingly important role in the deep understanding of pathologies. They represent a direct spotlight on the molecular correlates of diseases and can be used for assessing earlier the state of health and decide the treatment of each patient in a personalized way. This article will show the basis of several imaging techniques, and give examples on the application and development of molecular imaging tracers.

View Article and Find Full Text PDF

Modern medicine is expanding the possibilities of receiving "personalized" diagnosis and therapies, providing minimal invasiveness, technological solutions based on non-ionizing radiation, early detection of pathologies with the main objectives of being operator independent and with low cost to society. Our research activities aim to strongly contribute to these trends by improving the capabilities of current diagnostic imaging systems, which are of key importance in possibly providing both optimal diagnosis and therapies to patients. In medical diagnostics, cellular imaging aims to develop new methods and technologies for the detection of specific metabolic processes in living organisms, in order to accurately identify and discriminate normal from pathological tissues.

View Article and Find Full Text PDF

Current imaging methods for catheter position monitoring during minimally invasive surgery do not provide an effective support to surgeons, often resulting in the choice of more invasive procedures. This study was conducted to demonstrate the feasibility of non-ionizing monitoring of endovascular devices through embedded quantitative ultrasound (QUS) methods, providing catheter self-localization with respect to selected anatomical structures. QUS-based algorithms for real-time automatic tracking of device position were developed and validated on in vitro and ex vivo phantoms.

View Article and Find Full Text PDF