Publications by authors named "Sergio Casas-Flores"

Mango is a popular tropical fruit that requires quarantine hot water treatment (QHWT) for postharvest sanitation, which can cause abiotic stress. Plants have various defense mechanisms to cope with stress; miRNAs mainly regulate the expression of these defense responses. Proteins involved in the biogenesis of miRNAs include DICER-like (DCL), ARGONAUTE (AGO), HYPONASTIC LEAVES 1 (HYL1), SERRATE (SE), HUA ENHANCER1 (HEN1), HASTY (HST), and HEAT-SHOCK PROTEIN 90 (HSP90), among others.

View Article and Find Full Text PDF

Fungi of the Trichoderma genus are called "biostimulants" because they promote plant growth and development and induce disease resistance. We used conventional transcriptome and gene co-expression analyses to understand the molecular response of the plant Arabidopsis thaliana to inoculation with Trichoderma atroviride or Trichoderma virens. The transcriptional landscape of the plant during the interaction with these fungi showed a reduction in functions such as reactive oxygen species production, defense mechanisms against pathogens, and hormone signaling.

View Article and Find Full Text PDF

Trichoderma spp. are ascomycete filamentous fungi widely distributed worldwide that establish mutualistic relationships with plants by antagonizing phytopathogens in the rhizosphere and colonizing the plant roots, hence, promoting plant growth and triggering the systemic resistance against phytopathogens. During the first stages of root colonization by Trichoderma, plants recognize the fungus as an invader by inducing the plant defense system, including the production of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Trichoderma atroviride is a root-colonizing fungus that confers multiple benefits to plants. In plants, small RNA (sRNA)-mediated gene silencing (sRNA-MGS) plays pivotal roles in growth, development, and pathogen attack. Here, we explored the role of core components of Arabidopsis thaliana sRNA-MGS pathways during its interaction with Trichoderma.

View Article and Find Full Text PDF

The establishment of plant-fungus mutualistic interaction requires bidirectional molecular crosstalk. Therefore, the analysis of the interacting organisms secretomes would help to understand how such relationships are established. Here, a gel-free shotgun proteomics approach was used to identify the secreted proteins of the plant and the mutualistic fungus during their interaction.

View Article and Find Full Text PDF

Monomeric GTPases, which belong to the Ras superfamily, are small proteins involved in many biological processes. They are fine-tuned regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several families have been identified in organisms from different kingdoms.

View Article and Find Full Text PDF

Humic substances are redox-active organic molecules, which play pivotal roles in several biogeochemical cycles due to their electron-transferring capacity involving multiple abiotic and microbial transformations. Based on the redox properties of humic substances, and the metabolic capabilities of microorganisms to reduce and oxidize them, we hypothesized that they could mediate the anaerobic oxidation of methane (AOM) coupled to the reduction of nitrous oxide (NO) in wetland sediments. This study provides several lines of evidence indicating the coupling between AOM and the reduction of NO through an extracellular electron transfer mechanism mediated by the redox active functional groups in humic substances (e.

View Article and Find Full Text PDF

spp. are filamentous fungi that colonize plant roots conferring beneficial effects to plants, either indirectly through the induction of their defense systems or directly through the suppression of phytopathogens in the rhizosphere. Transcriptomic analyses of spp.

View Article and Find Full Text PDF

Ras-GTPases are nucleotide hydrolases involved in key cellular processes. In fungi, Ras-GTPases regulate conidiation, development, virulence, and interactions with other fungi or plants. Trichoderma spp.

View Article and Find Full Text PDF

Plants are capable of perceiving microorganisms by coordinating processes to establish different forms of plant-microbe relationships. Plant colonization is governed in fungal and bacterial systems by secreted effector molecules, suppressing plant defense responses and modulating plant physiology to promote either virulence or compatibility. Proteins, secondary metabolites, and small RNAs have been described as effector molecules that use different mechanisms to establish the interaction.

View Article and Find Full Text PDF

The infectious proliferation of phytopathogenic microorganisms depends on a complex sequence of biological events involving host defense, environmental conditions, and chemical and physical interactions between the surface of a plant and microorganisms, which in numerous cases display resistance to conventional microbicides. Among these microorganisms, () is a Gram-negative bacterium that attacks wounded parts of plants before invading healthy tissues. In order to control , considering it to be a phytopathogenic model, an effective method featuring silver nanoparticles (AgNPs) functionalized on titanate nanotubes (Nts) used as photoactive antibacterial agents was investigated to understand the effective photoactive annihilation mechanism.

View Article and Find Full Text PDF

spp. are a rich source of secondary metabolites and volatile organic compounds (VOCs), which may induce plant defenses and modulate plant growth. In filamentous fungi, chromatin modifications regulate secondary metabolism.

View Article and Find Full Text PDF

Background: is a neglected fungal pathogen for the human being and other mammals. In several fungal systems, Och1 is a Golgi α1,6-mannosyltransferase with a key function in the synthesis of -linked glycans; which are important elements during the host-fungus interplay. The role of in fungal virulence seems to be species-specific, being an essential component for virulence and dispensable during the interaction of with the host.

View Article and Find Full Text PDF

The growth of filamentous fungi is a complex process that involves hyphal elongation and branching. Microscopic observations provide a wealth of information on fungal growth, although often requiring laborious manual intervention to record and analyze images. Here, we introduce a novel tool for automated tracking of growth in fungal hyphae that affords quantitative analysis of growth rate and morphology.

View Article and Find Full Text PDF

Novel biotechnologies to valorize waste emissions are based on the use of specialized microbial groups that produce different compounds of industrial interest. On this scenario, the retention of such specific microorganisms in the system is of critical interest; however, the potential limitations of working with simplified cultures in a competitive open environment are neither fully explored nor well understood. In this work, a series of biofilters treating methanol vapors coupled with heterologous endochitinase production were used to evaluate the performance of a specialized microbial population during a typical open-to-environment operation.

View Article and Find Full Text PDF

Sporotrichosis is an infection caused by members of the Sporothrix genus, and among them, Sporothrix schenckii is one of the etiological agents. Both, the disease and the causative agent have gained interest in the recent years, because of the report of epidemic outbreaks, and the description of the disease transmission from animals to human beings. Despite the relevance of S.

View Article and Find Full Text PDF

Flavin-binding photoreceptor proteins sense blue-light (BL) in diverse organisms and have become core elements in recent optogenetic applications. The light-oxygen-voltage (LOV) protein Vivid (VVD) from the filamentous fungus Neurospora crassa is a classic BL photoreceptor, characterized by effecting a photocycle based on light-driven formation and subsequent spontaneous decay of a flavin-cysteinyl adduct. Here we report that VVD presents alternative outcomes to light exposure that result in protein self-oxidation and, unexpectedly, rise of stability through kinetic control.

View Article and Find Full Text PDF

Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants.

View Article and Find Full Text PDF

Unlabelled: Fungal blue-light photoreceptors have been proposed as integrators of light and oxidative stress. However, additional elements participating in the integrative pathway remain to be identified. In Trichoderma atroviride, the blue-light regulator (BLR) proteins BLR-1 and -2 are known to regulate gene transcription, mycelial growth, and asexual development upon illumination, and recent global transcriptional analysis revealed that the histone deacetylase-encoding gene hda-2 is induced by light.

View Article and Find Full Text PDF

The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T.

View Article and Find Full Text PDF
Article Synopsis
  • Trichoderma fungi, particularly T. virens and T. atroviride, enhance plant growth and disease resistance in tomato plants by secreting proteins Sm1 and Epl1.
  • Deleting these proteins reduces systemic protection against certain pathogens, while overexpressing them increases resistance against all tested pathogens.
  • The study reveals a complex interaction between beneficial and pathogenic microorganisms that influences plant responses, suggesting a more intricate understanding of plant-fungi dynamics than previously recognized.
View Article and Find Full Text PDF

Fruit ripening is a physiological and biochemical process genetically programmed to regulate fruit quality parameters like firmness, flavor, odor and color, as well as production of ethylene in climacteric fruit. In this study, a transcriptomic analysis of mango (Mangifera indica L.) mesocarp cv.

View Article and Find Full Text PDF

RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states.

View Article and Find Full Text PDF