Publications by authors named "Sergio Capareda"

Peak ambient dust levels in the San Joaquin Valley (SJV) are often coincident with peak agricultural harvest seasons, particularly for nut orchards. Federal reference methods (FRMs), consisting of mass-based sampling techniques, are designed to measure and analyze ambient dust concentrations. However, FRMs generally require meticulous attention to sampling details, tedious labor and logistics, and time-consuming dispersion calculations.

View Article and Find Full Text PDF

Particulate matter (PM) emissions from dairies and feedlot sources require regular emission factor update. Likewise, development of simple measurement technique to accurately measure pollution concentration is warranted to limit the impact of air pollution and take necessary actions. During June of 2020, a dairy facility from central Texas and a feedlot from the Texas Panhandle region, titled as Dairy B and Feedlot C, respectively, were chosen for measurement of PM emissions in the state of Texas to represent dairy facilities and cattle feedlots PM emission rates.

View Article and Find Full Text PDF

Nickel (Ni) leftovers arise from both catalyst application interventions and Ni alloy piping of the cooking oil industry (COI) being wasted as pollutants of freshwater bodies via discharged effluent. The current study assessed one of the indigenously feasible Ni removal systems comprising autochthonous Gomont (AP)-driven Ni phycoremediation cells (NPCs). After screening AP for hyperaccumulation in the Ni spiked solution, AP was transferred to the NPCs.

View Article and Find Full Text PDF

The purpose of the article is to analyze the interaction effect between social network and extension service in farmers' agricultural technology adoption efficiency (TAE). The empirical analysis refers to samples of farmers' water-saving irrigation technology (WSIT) adoption from Minqin, China. The result indicates that social network and extension service can improve farmers' TAE, but they are found to be competitive from the perspective of overall social network.

View Article and Find Full Text PDF

In this work, chitosan, a biodegradable flocculant, was investigated to determine its utility in flocculating microalgae, its effect on cell integrity, and its impact on lipid extraction and the conversion to fatty acid methyl ester (FAME). Results showed that chitosan adequately performed flocculation on microalgae and achieved a high harvesting efficiency of 96.35 ± 1.

View Article and Find Full Text PDF

The lack of an available particulate matter (PM) PM emission factor for almond harvesting operations has become a challenge for particulate matter regulations and emissions inventory in California. Low-dust harvesters are viewed as one of the strategies to reduce PM emissions and help achieve the state's PM attainment targets. This paper evaluates the potential emission reduction from using low-dust harvesters compared to the conventional.

View Article and Find Full Text PDF

Acid washing is an alternative and promising approach for biomass to produce high-quality bio-oil. The hydrochloric acid washing pretreatment of sweet sorghum bagasse was performed in this study. The effects of acid washing on the ultrastructure of sweet sorghum bagasse were investigated using scanning electron microscope and Fourier transform infrared, and the effects on pyrolysis using thermogravimetric analyzer and a fast pyrolysis device.

View Article and Find Full Text PDF

The adsorption potential and governing mechanisms of emerging contaminants, i.e. acetaminophen or acetyl-para-aminophenol (APAP) and methylene blue (MB) dye, on activated carbon derived from municipal solid waste were investigated in this work.

View Article and Find Full Text PDF

Biochar produced from the slow pyrolysis of municipal solid waste was activated with KOH and thermal treatments to enhance its surface and adsorptive properties. The effects of KOH concentration, activation temperature and time on the specific surface area (SSA) of the activated biochar were evaluated and optimized using central composite design (CCD) of the response surface methodology (RSM). Results showed that the activation of biochar enhanced its SSA from 402.

View Article and Find Full Text PDF

The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated.

View Article and Find Full Text PDF

Biochar converted from waste products is being considered as an alternative adsorbent for removal of aqueous heavy metal(loid)s. In this work, experimental and modeling investigations were conducted to examine the effect of biochars pyrolytically produced from municipal solid wastes on removing aqueous As(V) before and after activated by 2M KOH solution. Results showed that the highest adsorption capacity of pristine biochars was 24.

View Article and Find Full Text PDF

Cotton gin trash (CGT) is a ubiquitous cotton-production-waste resource which can be used for ethanol production. In this research, seven combinations of three pretreatments; ultrasonication, liquid hot water and ligninolytic enzymes were evaluated on CGT to select the best pretreatments combination that increased the cellulose conversion and the ethanol yield in the saccharification and fermentation processes, respectively. The structural changes in the cellulose, hemicellulose and lignin from CGT were followed using FT-IR after each pretreatment.

View Article and Find Full Text PDF

Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.

View Article and Find Full Text PDF

Greenhouse gas (GHG) emissions from agricultural production operations are recognized as an important air quality issue. A new technique following the U.S.

View Article and Find Full Text PDF

Almond harvest accounts for substantial PM10 (particulate matter [PM] < or =10 microm in nominal aerodynamic diameter) emissions in California each harvest season. This paper evaluates the effects of using reduced-pass sweepers and lower harvester separation fan speeds (930 rpm) on lowering PM emissions from almond harvesting operations. In-canopy measurements of PM concentrations were collected along with PM concentration measurements at the orchard boundary; these were used in conjunction with on-site meteorological data and inverse dispersion modeling to back-calculate emission rates from the measured concentrations.

View Article and Find Full Text PDF

A considerable challenge in applied agricultural use of reflection-based spectroscopy is that most analytical approaches are quite sensitive to radiometric noise and/or low radiometric repeatability. In this study, hyperspectral imaging data were acquired from individual maize leaves and the main objective was to evaluate a classification system for detection of drought stress levels and spider mite infestation levels across maize hybrids and vertical position of maize leaves. A second objective was to estimate biomass and biofuel potential (heating value) of growing maize plants.

View Article and Find Full Text PDF

Almond harvest accounts for substantial particulate matter less than 10 microm in aerodynamic diameter (PM10) emissions in California each harvest season. This paper addresses the reduction of harvester ground speed from a standard 8 km/hr (5 mph) to 4 km/hr (2.5 mph) as a possible mitigation measure for reducing PM10 emissions.

View Article and Find Full Text PDF

There is a need for a robust and accurate technique to measure ammonia (NH3) emissions from animal feeding operations (AFOs) to obtain emission inventories and to develop abatement strategies. Two consecutive seasonal studies were conducted to measure NH3 emissions from an open-lot dairy in central Texas in July and December of 2005. Data including NH3 concentrations were collected and NH3 emission fluxes (EFls), emission rates (ERs), and emission factors (EFs) were calculated for the open-lot dairy.

View Article and Find Full Text PDF

Controlled bench-scale laboratory experiments were conducted to evaluate the recovery of ammonia (NH3) and hydrogen sulfide (H2S) from dynamic isolation flux chambers. H2S (80-4000 ppb) and NH3 (5000-40,000 ppb) samples were diffused through the flux chamber to simulate ground level area source emissions while measuring the inlet and outlet flux chamber concentrations simultaneously. Results showed that the recovery of H2S during a 30-min sampling time was almost complete for concentrations >2000 ppb.

View Article and Find Full Text PDF