Int J Mol Sci
October 2022
Cell surface receptors play essential roles in perceiving and processing external and internal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration, play a crucial role in plant development and disease defense. Although RLPs and RLKs share a similar single-pass transmembrane configuration, RLPs harbor short divergent C-terminal regions instead of the conserved kinase domain of RLKs.
View Article and Find Full Text PDFMachine learning (ML) is a field of artificial intelligence that has rapidly emerged in molecular biology, thus allowing the exploitation of Big Data concepts in plant genomics. In this context, the main challenges are given in terms of how to analyze massive datasets and extract new knowledge in all levels of cellular systems research. In summary, ML techniques allow complex interactions to be inferred in several biological systems.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
March 2019
The fungus Colletotrichum lindemuthianum is the causal agent of anthracnose in the common bean (Phaseolus vulgaris), and anthracnose is one of the most devastating diseases of this plant species. However, little is known about the proteins that are essential for the fungus-plant interactions. Knowledge of the fungus' arsenal of effector proteins is of great importance for understanding this pathosystem.
View Article and Find Full Text PDFBackground: Pisolithus microcarpus (Cooke & Massee) G. Cunn is a gasteromycete that produces closed basidiocarps in symbiosis with eucalypts and acacias. The fungus produces a complex basidiocarp composed of peridioles at different developmental stages and an upper layer of basidiospores free of the hyphae and ready for wind dispersal upon the rupture of the basidiocarp pellis.
View Article and Find Full Text PDFA number of genes that confer resistance to coffee leaf rust (S 1-S 9) have been identified within the genus Coffea, but despite many years of research on this pathosystem, the complementary avirulence genes of Hemileia vastatrix have not been reported. After identification of H. vastatrix effector candidate genes (HvECs) expressed at different stages of its lifecycle, we established an assay to characterize HvEC proteins by delivering them into coffee cells via the type-three secretion system (T3SS) of Pseudomonas syringae pv.
View Article and Find Full Text PDFAsian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is one of the most economically important crop diseases, but is only treatable with fungicides, which are becoming less effective owing to the emergence of fungicide resistance. There are no commercial soybean cultivars with durable resistance to P. pachyrhizi, and although soybean resistance loci have been mapped, no resistance genes have been cloned.
View Article and Find Full Text PDFTransposons are an important source of genetic variation. The phytopathogen Moniliophthora perniciosa shows high level of variability but little is known about the role of class I elements in shaping its genome. In this work, we aimed the characterization of a new gypsy/Ty3 retrotransposon species, named MpSaci, in the M.
View Article and Find Full Text PDFEucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis.
View Article and Find Full Text PDFTransposable elements are ubiquitous and constitute an important source of genetic variation in addition to generating deleterious mutations. Several filamentous fungi are able to defend against transposable elements using RIP(repeat-induced point mutation)-like mechanisms, which induce mutations in duplicated sequences. The sequenced Colletotrichum graminicola genome and the availability of transposable element databases provide an efficient approach for identifying and characterizing transposable elements in this fungus, which was the subject of this study.
View Article and Find Full Text PDFColletotrichum lindemuthianum is the causal agent of anthracnose in the common bean, and the genes that encode its cell-wall-degrading enzymes are crucial for the development of the disease. Pectinases are the most important group of cell wall-degrading enzymes produced by phytopathogenic fungi. The pecC1l gene, which encodes a pectate lyase in C.
View Article and Find Full Text PDFMicrobiology (Reading)
January 2013
Boto, a class II transposable element, was characterized in the Moniliophthora perniciosa genome. The Boto transposase is highly similar to plant PIF-like transposases that belong to the newest class II superfamily known as PIF/Harbinger. Although Boto shares characteristics with PIF-like elements, other characteristics, such as the transposase intron position, the position and direction of the second ORF, and the footprint, indicate that Boto belongs to a novel family of the PIF/Harbinger superfamily.
View Article and Find Full Text PDFBackground: Corynebacterium pseudotuberculosis, a gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America.
View Article and Find Full Text PDFBackground: Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC) libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing.
View Article and Find Full Text PDFPlant responses against pathogens cause up- and downward shifts in gene expression. To identify differentially expressed genes in a plant-virus interaction, susceptible tomato plants were inoculated with the potyvirus Pepper yellow mosaic virus (PepYMV) and a subtractive library was constructed from inoculated leaves at 72 h after inoculation. Several genes were identified as upregulated, including genes involved in plant defense responses (e.
View Article and Find Full Text PDF