Sampling a diverse set of high-quality solutions for hard optimization problems is of great practical relevance in many scientific disciplines and applications, such as artificial intelligence and operations research. One of the main open problems is the lack of ergodicity, or mode collapse, for typical stochastic solvers based on Monte Carlo techniques leading to poor generalization or lack of robustness to uncertainties. Currently, there is no universal metric to quantify such performance deficiencies across various solvers.
View Article and Find Full Text PDFGenerative adversarial networks (GANs) are one of the most widely adopted machine learning methods for data generation. In this work, we propose a new type of architecture for quantum generative adversarial networks (an entangling quantum GAN, EQ-GAN) that overcomes limitations of previously proposed quantum GANs. Leveraging the entangling power of quantum circuits, the EQ-GAN converges to the Nash equilibrium by performing entangling operations between both the generator output and true quantum data.
View Article and Find Full Text PDFQuantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC).
View Article and Find Full Text PDFInteractions in quantum systems can spread initially localized quantum information into the exponentially many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is key to resolving several open questions in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
View Article and Find Full Text PDFThe use of quantum computing for machine learning is among the most exciting prospective applications of quantum technologies. However, machine learning tasks where data is provided can be considerably different than commonly studied computational tasks. In this work, we show that some problems that are classically hard to compute can be easily predicted by classical machines learning from data.
View Article and Find Full Text PDFThe promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2 (about 10).
View Article and Find Full Text PDFMany experimental proposals for noisy intermediate scale quantum devices involve training a parameterized quantum circuit with a classical optimization loop. Such hybrid quantum-classical algorithms are popular for applications in quantum simulation, optimization, and machine learning. Due to its simplicity and hardware efficiency, random circuits are often proposed as initial guesses for exploring the space of quantum states.
View Article and Find Full Text PDFThe tunneling between the two ground states of an Ising ferromagnet is a typical example of many-body tunneling processes between two local minima, as they occur during quantum annealing. Performing quantum Monte Carlo (QMC) simulations we find that the QMC tunneling rate displays the same scaling with system size, as the rate of incoherent tunneling. The scaling in both cases is O(Δ^{2}), where Δ is the tunneling splitting (or equivalently the minimum spectral gap).
View Article and Find Full Text PDFQuantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking.
View Article and Find Full Text PDFThe development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits.
View Article and Find Full Text PDFTwo objects can be distinguished if they have different measurable properties. Thus, distinguishability depends on the Physics of the objects. In considering graphs, we revisit the Ising model as a framework to define physically meaningful spectral invariants.
View Article and Find Full Text PDFQuantum annealing is a general strategy for solving difficult optimization problems with the aid of quantum adiabatic evolution. Both analytical and numerical evidence suggests that under idealized, closed system conditions, quantum annealing can outperform classical thermalization-based algorithms such as simulated annealing. Current engineered quantum annealing devices have a decoherence timescale which is orders of magnitude shorter than the adiabatic evolution time.
View Article and Find Full Text PDFSequences of commuting quantum operators can be parallelized using entanglement. This transformation is behind some optimal quantum metrology protocols and recent results on quantum circuit complexity. We show that dephasing quantum maps in arbitrary dimension can also be parallelized.
View Article and Find Full Text PDFWe present an algorithm that prepares thermal Gibbs states of one dimensional quantum systems on a quantum computer without any memory overhead, and in a time significantly shorter than other known alternatives. Specifically, the time complexity is dominated by the quantity N(‖h‖/T), where N is the size of the system, ‖h‖ is a bound on the operator norm of the local terms of the Hamiltonian (coupling energy), and T is the temperature. Given other results on the complexity of thermalization, this overall scaling is likely optimal.
View Article and Find Full Text PDFA parameter whose coupling to a quantum probe of n constituents includes all two-body interactions between the constituents can be measured with an uncertainty that scales as 1/n3/2, even when the constituents are initially unentangled. We devise a protocol that achieves the 1/n3/2 scaling without generating any entanglement among the constituents, and we suggest that the protocol might be implemented in a two-component Bose-Einstein condensate.
View Article and Find Full Text PDFWe develop generalized bounds for quantum single-parameter estimation problems for which the coupling to the parameter is described by intrinsic multisystem interactions. For a Hamiltonian with k-system parameter-sensitive terms, the quantum limit scales as 1/Nk, where N is the number of systems. These quantum limits remain valid when the Hamiltonian is augmented by any parameter-independent interaction among the systems and when adaptive measurements via parameter-independent coupling to ancillas are allowed.
View Article and Find Full Text PDF