Publications by authors named "Sergio B Legoas"

Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting.

View Article and Find Full Text PDF

We report the first detailed fully atomistic molecular dynamics study of the encapsulation of symmetric (C(60)) and asymmetric fullerenes (C(70) and C(78)) inside single-walled carbon nanotubes of different diameters. Different ordered phases have been found and shown to be tube diameter dependent. Rotational structural disorder significantly affecting the volume fraction of the packing was observed for the molecular arrangements of asymmetric fullerenes.

View Article and Find Full Text PDF

Recently, we have proposed that the origin of anomalously long interatomic distances in suspended gold chains could be the result of carbon contamination during sample manipulation [Phys. Rev. Lett.

View Article and Find Full Text PDF

A nanoscale understanding of the complex dynamics of large molecules at surfaces is essential for the bottom-up design of molecular nanostructures. Here we show that we can change the diffusion coefficient of the complex organic molecule known as Violet Lander (VL, C(108)H(104)) on Cu(110) by two orders of magnitude by using the STM at low temperatures to switch between two adsorption configurations that differ only in the molecular orientation with respect to the substrate lattice. From an interplay with molecular dynamics simulations, we interpret the results within a lock-and-key model similar to the one driving the recognition between biomolecules: the molecule (key) is immobilized only when its orientation is such that the molecular shape fits the atomic lattice of the surface (lock); otherwise the molecule is highly mobile.

View Article and Find Full Text PDF

The discovery of long bonds in gold atom chains has represented a challenge for physical interpretation. In fact, interatomic distances frequently attain 3.0-3.

View Article and Find Full Text PDF