Publications by authors named "Sergio Alan Cervantes-Perez"

Screening a transposon-mutagenized soybean population led to the discovery of a recessively inherited chlorotic phenotype. This "y24" phenotype results in smaller stature, weaker stems, and a smaller root system. Genome sequencing identified 15 candidate genes with mutations likely to result in a loss of function.

View Article and Find Full Text PDF

The soybean root system is complex. In addition to being composed of various cell types, the soybean root system includes the primary root, the lateral roots, and the nodule, an organ in which mutualistic symbiosis with N-fixing rhizobia occurs. A mature soybean root nodule is characterized by a central infection zone where atmospheric nitrogen is fixed and assimilated by the symbiont, resulting from the close cooperation between the plant cell and the bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • - A soybean population with transposon mutations revealed a recessive "vir1" phenotype, characterized by reduced size, weakened structures, and smaller root systems with fewer nodules.
  • - Genome sequencing identified 15 candidate genes, ultimately narrowing down to one crucial mutation that disrupts a gene responsible for splicing, mostly expressed in mesophyll cells and activated by cold stress during germination.
  • - Similar mutations in rice also led to chlorosis under cooler temperatures, and soybean vir1 mutants exhibited worsening symptoms in low temperatures; transgenic restoration in Arabidopsis confirmed the mutation's link to the vir1 phenotype.
View Article and Find Full Text PDF

Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia. This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria, as well as the initiation of nodule primordia from root cortical, endodermal, and pericycle cells, leading to the development of a new root organ, the nodule, where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant. Here, we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq (sNucRNA-seq) profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots.

View Article and Find Full Text PDF

Plant single-cell RNA-seq technology quantifies the abundance of plant transcripts at a single-cell resolution. Deciphering the transcriptomes of each plant cell, their regulation during plant cell development, and their response to environmental stresses will support the functional study of genes, the establishment of precise transcriptional programs, the prediction of more accurate gene regulatory networks, and, in the long term, the design of de novo gene pathways to enhance selected crop traits. In this review, we will discuss the opportunities, challenges, and problems, and share tentative solutions associated with the generation and analysis of plant single-cell transcriptomes.

View Article and Find Full Text PDF

Membrane proteins work in large complexes to perceive and transduce external signals and to trigger a cellular response leading to the adaptation of the cells to their environment. Biochemical assays have been extensively used to reveal the interaction between membrane proteins. However, such analyses do not reveal the unique and complex composition of the membrane proteins of the different plant cell types.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the RNA Directed DNA Methylation (RdDM) pathway in plants, particularly in Utricularia gibba, a carnivorous plant with a compact genome and small intergenic regions.
  • Researchers discovered that U. gibba has a unique distribution of small RNAs and lower global DNA methylation levels compared to other angiosperms, which could affect gene regulation.
  • The findings highlight that a truncated version of the DICER-LIKE 3 (DCL3) protein relates to reduced small-interfering RNAs and developmental issues during female gametogenesis, suggesting potential evolutionary changes in the RdDM mechanism in small-genome plants.
View Article and Find Full Text PDF

Phosphate (Pi) is a pivotal nutrient that constraints plant development and productivity in natural ecosystems. Land colonization by plants, more than 470 million years ago, evolved adaptive mechanisms to conquer Pi-scarce environments. However, little is known about the molecular basis underlying such adaptations at early branches of plant phylogeny.

View Article and Find Full Text PDF

In plants, the best characterized plant regeneration process is de novo organogenesis. This type of regeneration is characterized by the formation of a multicellular structure called callus. Calli are induced via phytohormone treatment of plant sections.

View Article and Find Full Text PDF

, the humped bladderwort, is a carnivorous plant that retains a tiny nuclear genome despite at least two rounds of whole genome duplication (WGD) since common ancestry with grapevine and other species. We used a third-generation genome assembly with several complete chromosomes to reconstruct the two most recent lineage-specific ancestral genomes that led to the modern genome structure. Patterns of subgenome dominance in the most recent WGD, both architectural and transcriptional, are suggestive of allopolyploidization, which may have generated genomic novelty and led to instantaneous speciation.

View Article and Find Full Text PDF

Phosphate (Pi) limitation is a constraint for plant growth in many natural and agricultural ecosystems. Plants possess adaptive mechanisms that enable them to cope with conditions of limited Pi supply, including a highly regulated genetic program controlling the expression of genes involved in different metabolic, signaling and development processes of plants. Recently, we showed that in response to phosphate limitation Arabidopsis thaliana sets specific DNA methylation patterns of genic features that often correlated with changes in gene expression.

View Article and Find Full Text PDF

Phosphate (Pi) availability is a significant limiting factor for plant growth and productivity in both natural and agricultural systems. To cope with such limiting conditions, plants have evolved a myriad of developmental and biochemical strategies to enhance the efficiency of Pi acquisition and assimilation to avoid nutrient starvation. In the past decade, these responses have been studied in detail at the level of gene expression; however, the possible epigenetic components modulating plant Pi starvation responses have not been thoroughly investigated.

View Article and Find Full Text PDF

It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba.

View Article and Find Full Text PDF