The ToxCast EPA challenge was managed by TopCoder in Spring 2014. The goal of the challenge was to develop a model to predict the lowest effect level (LEL) concentration based on in vitro measurements and calculated in silico descriptors. This article summarizes the computational steps used to develop the Rank-I model, which calculated the lowest prediction error for the secret test data set of the challenge.
View Article and Find Full Text PDFComb Chem High Throughput Screen
December 2015
The use of long-term animal studies for human and environmental toxicity estimation is more discouraged than ever before. Alternative models for toxicity prediction, including QSAR studies, are gaining more ground. A recent approach is to combine in vitro chemical profiling and in silico chemical descriptors with the knowledge about toxicity pathways to derive a unique signature for toxicity endpoints.
View Article and Find Full Text PDFBackground: QSAR is an established and powerful method for cheap in silico assessment of physicochemical properties and biological activities of chemical compounds. However, QSAR models are rather complex mathematical constructs that cannot easily be interpreted. Medicinal chemists would benefit from practical guidance regarding which molecules to synthesize.
View Article and Find Full Text PDFJ Chem Inf Model
December 2014
This article contributes a highly accurate model for predicting the melting points (MPs) of medicinal chemistry compounds. The model was developed using the largest published data set, comprising more than 47k compounds. The distributions of MPs in drug-like and drug lead sets showed that >90% of molecules melt within [50,250]°C.
View Article and Find Full Text PDFThe aim of the CADASTER project (CAse Studies on the Development and Application of in Silico Techniques for Environmental Hazard and Risk Assessment) was to exemplify REACH-related hazard assessments for four classes of chemical compound, namely, polybrominated diphenylethers, per and polyfluorinated compounds, (benzo)triazoles, and musks and fragrances. The QSPR-THESAURUS website (http: / /qspr-thesaurus.eu) was established as the project's online platform to upload, store, apply, and also create, models within the project.
View Article and Find Full Text PDFThe dimethyl sulfoxide (DMSO) solubility data from Enamine and two UCB pharma compound collections were analyzed using 8 different machine learning methods and 12 descriptor sets. The analyzed data sets were highly imbalanced with 1.7-5.
View Article and Find Full Text PDFThe importance of reliable methods for representative sub-sampling in terms of experimental design and risk assessment within the European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) system is crucial. We developed experimental design approaches, by utilising predicted properties and the 'distance to model' parameter, to estimate the benefits of certain compounds to the quality of a resulting model. A statistical evaluation of four regression data sets and one classification data set showed that the adaptive concept of iteratively refining the representation of the chemical space contributes to a more efficient and more reliable selection in comparison to traditional approaches.
View Article and Find Full Text PDFThe Online Chemical Modeling Environment (OCHEM, http://ochem.eu) is a web-based platform that provides tools for automation of typical steps necessary to create a predictive QSAR/QSPR model. The platform consists of two major subsystems: a database of experimental measurements and a modeling framework.
View Article and Find Full Text PDFThe Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling. The platform consists of two major subsystems: the database of experimental measurements and the modeling framework. A user-contributed database contains a set of tools for easy input, search and modification of thousands of records.
View Article and Find Full Text PDFPrediction of CYP450 inhibition activity of small molecules poses an important task due to high risk of drug-drug interactions. CYP1A2 is an important member of CYP450 superfamily and accounts for 15% of total CYP450 presence in human liver. This article compares 80 in-silico QSAR models that were created by following the same procedure with different combinations of descriptors and machine learning methods.
View Article and Find Full Text PDFThe estimation of accuracy and applicability of QSAR and QSPR models for biological and physicochemical properties represents a critical problem. The developed parameter of "distance to model" (DM) is defined as a metric of similarity between the training and test set compounds that have been subjected to QSAR/QSPR modeling. In our previous work, we demonstrated the utility and optimal performance of DM metrics that have been based on the standard deviation within an ensemble of QSAR models.
View Article and Find Full Text PDF