In this paper, we elucidate a generic mechanism behind strain-induced phase transition in aqueous solutions of silk-inspired biomimetics by atomistic molecular dynamics simulations. We show the results of modeling of homopeptides polyglycine Gly and polyalanine Ala and a heteropeptide (Gly-Ala-Gly-Ala-Gly-Ser), i.e.
View Article and Find Full Text PDFRecently, we have shown that a tensile stress applied to chains of poly(ethylene oxide) (PEO) in water reduces the solubility and leads to phase separation of PEO chains from water with the formation of a two-phase region. In this work, we further elucidate the generic mechanism behind strain-induced phase transitions in aqueous PEO solutions with concentrations of 50-60 wt % by performing all-atom molecular dynamics simulations. In particular, we study the stability of oriented PEO fibers after removing stretching forces.
View Article and Find Full Text PDFWe study the dilute aqueous solutions of poly(ethylene oxide) (PEO) oligomers that are subject to an elongating force dipole acting on both chain ends using atomistic molecular dynamics. By increasing the force, liquid-liquid demixing can be observed at room temperature far below the lower critical solution temperature. For forces above 35 pN, fibrillar nanostructures are spontaneously formed related to a decrease in hydrogen bonding between PEO and water.
View Article and Find Full Text PDFUnderstanding the molecular interactions between inorganic phases such as silica and organic material is fundamental for chromatographic applications, for tailoring silica-enzyme interactions, and for elucidating the mechanisms of biomineralization. The formation, structure, and properties of the organic/inorganic interface is crucial in this context. Here, we investigate the interaction of selectively C-labeled choline with Si-labeled monosilicic acid/silica at the molecular level.
View Article and Find Full Text PDFBoth the device composition and fabrication process are well-known to crucially affect the power conversion efficiency of polymer solar cells. Major advances have recently been achieved through the development of novel device materials and inkjet printing technologies, which permit to improve their durability and performance considerably. In this work, we demonstrate the usefulness of a recently developed field-based multiscale solar-cell algorithm to investigate the influence of the material characteristics, like, e.
View Article and Find Full Text PDFFlexible photovoltaic devices possess promising perspectives in opto-electronic technologies, where high mobility and/or large-scale applicability are important. However, their usefulness in such applications is currently still limited due to the low level of optimization of their performance and durability. For the improvement of these properties, a better understanding and control of small-scale annihilation phenomena involved in the photovoltaic process, such as exciton loss and charge carrier loss, is necessary, which typically implicates multiple length- and time-scales.
View Article and Find Full Text PDFThe photoelectric power conversion efficiency of polymer solar cells is till now, compared to conventional inorganic solar cells, still relatively low with maximum values ranging from 7% to 8%. This essentially relates to the existence of exciton and charge carrier loss phenomena, reducing the performance of polymer solar cells significantly. In this paper we introduce a new computer simulation technique, which permits to explore the causes of the occurrence of such phenomena at the nanoscale and to design new photovoltaic materials with optimized opto-electronic properties.
View Article and Find Full Text PDF